# Copyright 2020 Joe Milbourn # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # TODONE change flags to use named bits, not bit type, u8 talkaround:1... # TODONE replace reprdata with utils.hexprint # TODONE read the whole image into memdata - need to re-arrange MEM_FORMAT to # suit, seeking around to put things in the right places, and set # default values # TODONE Exception as e # TODONE return memmap.MemoryMapBytes # TODONE change experimental prompt wording # TODONE add DTCS from chirp import chirp_common, directory, memmap, errors, util from chirp import bitwise import struct import time import logging LOG = logging.getLogger(__name__) # Gross hack to handle missing future module on un-updatable # platforms like MacOS. Just avoid registering these radio # classes for now. try: from builtins import bytes has_future = True except ImportError: has_future = False LOG.warning('python-future package is not ' 'available; %s requires it' % __name__) # Here is where we define the memory map for the radio. Since # We often just know small bits of it, we can use #seekto to skip # around as needed. MEM_FORMAT = ''' #seekto 0x0000; struct { bbcd freq[4]; bbcd offset[4]; u8 unknown1; u8 talkaround:1, scramble:1, unknown:2, txpower:2, duplex:2; u8 unknown_bits1:4, channel_width:2, reverse:1, tx_off:1; u8 unknown_bits2:4, dtcs_decode_en:1, ctcss_decode_en:1, dtcs_encode_en:1, ctcss_encode_en:1; u8 ctcss_dec_tone; u8 ctcss_enc_tone; u8 dtcs_decode_code; u8 unknown_bits6:6, dtcs_decode_invert:1, dtcs_decode_code_highbit:1; u8 dtcs_encode_code; u8 unknown_bits7:6, dtcs_encode_invert:1, dtcs_encode_code_highbit:1; u8 unknown_bits4:6, busy_channel_lockout:2; u8 unknown6; u8 unknown_bits5:7, tone_squelch_en:1; u8 unknown7; u8 unknown8; u8 unknown9; u8 unknown10; char name[5]; ul16 customctcss; } memory[200]; #seekto 0x1940; struct { u8 occupied_bitfield[32]; u8 scan_enabled_bitfield[32]; } memory_status; ''' TXPOWER_LOW = 0x00 TXPOWER_MED = 0x01 TXPOWER_HIGH = 0x02 DUPLEX_NOSPLIT = 0x00 DUPLEX_POSSPLIT = 0x01 DUPLEX_NEGSPLIT = 0x02 DUPLEX_ODDSPLIT = 0x03 CHANNEL_WIDTH_25kHz = 0x02 CHANNEL_WIDTH_20kHz = 0x01 CHANNEL_WIDTH_12d5kHz = 0x00 BUSY_CHANNEL_LOCKOUT_OFF = 0x00 BUSY_CHANNEL_LOCKOUT_REPEATER = 0x01 BUSY_CHANNEL_LOCKOUT_BUSY = 0x02 #ALLOWED_RADIO_TYPES = ['AT778UV\x01V200'] MEMORY_ADDRESS_RANGE = (0x0000, 0x3290) MEMORY_RW_BLOCK_SIZE = 0x10 MEMORY_RW_BLOCK_CMD_SIZE = 0x16 POWER_LEVELS = [chirp_common.PowerLevel('Low', dBm=37), chirp_common.PowerLevel('Medium', dBm=40), chirp_common.PowerLevel('High', dBm=44)] # CTCSS Tone definitions TONE_CUSTOM_CTCSS = 0x33 TONE_MAP_VAL_TO_TONE = {0x00: 62.5, 0x01: 67.0, 0x02: 69.3, 0x03: 71.9, 0x04: 74.4, 0x05: 77.0, 0x06: 79.7, 0x07: 82.5, 0x08: 85.4, 0x09: 88.5, 0x0a: 91.5, 0x0b: 94.8, 0x0c: 97.4, 0x0d: 100.0, 0x0e: 103.5, 0x0f: 107.2, 0x10: 110.9, 0x11: 114.8, 0x12: 118.8, 0x13: 123.0, 0x14: 127.3, 0x15: 131.8, 0x16: 136.5, 0x17: 141.3, 0x18: 146.2, 0x19: 151.4, 0x1a: 156.7, 0x1b: 159.8, 0x1c: 162.2, 0x1d: 165.5, 0x1e: 167.9, 0x1f: 171.3, 0x20: 173.8, 0x21: 177.3, 0x22: 179.9, 0x23: 183.5, 0x24: 186.2, 0x25: 189.9, 0x26: 192.8, 0x27: 196.6, 0x28: 199.5, 0x29: 203.5, 0x2a: 206.5, 0x2b: 210.7, 0x2c: 218.1, 0x2d: 225.7, 0x2e: 229.1, 0x2f: 233.6, 0x30: 241.8, 0x31: 250.3, 0x32: 254.1} TONE_MAP_TONE_TO_VAL = {TONE_MAP_VAL_TO_TONE[val]: val for val in TONE_MAP_VAL_TO_TONE} TONES_EN_TXTONE = (1 << 3) TONES_EN_RXTONE = (1 << 2) TONES_EN_TXCODE = (1 << 1) TONES_EN_RXCODE = (1 << 0) TONES_EN_NO_TONE = 0 # Calculate the checksum used in serial packets def checksum(message_bytes): mask = 0xFF checksum = 0 for b in message_bytes: checksum = (checksum + b) & mask return checksum # Send a command to the radio, return any reply stripping the echo of the # command (tx and rx share a single pin in this radio) def send_serial_command(serial, command, expectedlen=None): ''' send a command to the radio, and return any response. set expectedlen to return as soon as that many bytes are read. ''' serial.write(command) serial.flush() response = b'' tout = time.time() + 0.5 while time.time() < tout: if serial.inWaiting(): response += serial.read() # remember everything gets echo'd back if len(response) - len(command) == expectedlen: break # cut off what got echo'd back, we don't need to see it again if response.startswith(command): response = response[len(command):] return response # return pretty printed hex and ascii representation of binary data def reprdata(bindata): hexwidth = 60 sepwidth = 4 line = '' sepctr = 0 for b in bytes(bindata): line += '%02x' % ord(b) sepctr += 1 if sepctr == sepwidth: line += ' ' sepctr = 0 line += ' ' * (hexwidth - len(line)) for b in bindata: if 0x21 <= ord(b) <= 0x7E: line += b else: line += '.' return line # Check the radio version reported to see if it's one we support # TODO extend this list, as I suspect there are other very similar radios # like the RT95 def check_ver(ver_response, allowed_types): ''' Check the returned radio version is one we approve of ''' ver = ver_response[1:-3] LOG.debug("ver_response = " + util.hexprint(ver_response)) LOG.debug('radio version: %s' % ver) return ver in allowed_types # Put the radio in programming mode, sending the initial command and checking # the response. raise RadioError if there is no response (500ms timeout), and # if the returned version isn't matched by check_ver def enter_program_mode(radio): serial = radio.pipe # place the radio in program mode, and confirm program_response = send_serial_command(serial, b'PROGRAM') if program_response != b'QX\x06': raise errors.RadioError('No initial response from radio.') LOG.debug('entered program mode') # read the radio ID string, make sure it matches one we know about ver_response = send_serial_command(serial, b'\x02') if not check_ver(ver_response, radio.ALLOWED_RADIO_TYPES): exit_program_mode(radio) raise errors.RadioError('Radio version not in allowed list: %s' % util.hexprint(ver_response)) # Exit programming mode def exit_program_mode(radio): send_serial_command(radio.pipe, b'END') # Parse a packet from the radio returning the header (R/W, address, data, and # checksum valid def parse_read_response(resp): addr = resp[:4] data = bytes(resp[4:-2]) cs = checksum(ord(d) for d in resp[1:-2]) valid = cs == ord(resp[-2]) if not valid: LOG.error('checksumfail: %02x, expected %02x' % (cs, ord(resp[-2]))) LOG.error('msg data: %s' % util.hexprint(resp)) return addr, data, valid # Download data from the radio and populate the memory map def do_download(radio): '''Download memories from the radio''' # Get the serial port connection serial = radio.pipe try: enter_program_mode(radio) memory_data = bytes() # status info for the UI status = chirp_common.Status() status.cur = 0 status.max = (MEMORY_ADDRESS_RANGE[1] - MEMORY_ADDRESS_RANGE[0])/MEMORY_RW_BLOCK_SIZE status.msg = 'Cloning from radio...' radio.status_fn(status) for addr in range(MEMORY_ADDRESS_RANGE[0], MEMORY_ADDRESS_RANGE[1] + MEMORY_RW_BLOCK_SIZE, MEMORY_RW_BLOCK_SIZE): read_command = struct.pack('>BHB', 0x52, addr, MEMORY_RW_BLOCK_SIZE) read_response = send_serial_command(serial, read_command, MEMORY_RW_BLOCK_CMD_SIZE) # LOG.debug('read response:\n%s' % util.hexprint(read_response)) address, data, valid = parse_read_response(read_response) memory_data += data # update UI status.cur = (addr - MEMORY_ADDRESS_RANGE[0])\ / MEMORY_RW_BLOCK_SIZE radio.status_fn(status) exit_program_mode(radio) except errors.RadioError as e: raise e except Exception as e: raise errors.RadioError('Failed to download from radio: %s' % e) return memmap.MemoryMapBytes(memory_data) # Build a write data command to send to the radio def make_write_data_cmd(addr, data, datalen): cmd = struct.pack('>BHB', 0x57, addr, datalen) cmd += data cs = checksum(ord(c) for c in cmd[1:]) cmd += struct.pack('>BB', cs, 0x06) return cmd # Upload a memory map to the radio def do_upload(radio): try: enter_program_mode(radio) serial = radio.pipe # send the initial message, radio responds with something that looks a # bit like a bitfield, but I don't know what it is yet. read_command = struct.pack('>BHB', 0x52, 0x3b10, MEMORY_RW_BLOCK_SIZE) read_response = send_serial_command(serial, read_command, MEMORY_RW_BLOCK_CMD_SIZE) address, data, valid = parse_read_response(read_response) LOG.debug('Got initial response from radio: %s' % util.hexprint(read_response)) bptr = 0 memory_addrs = range(MEMORY_ADDRESS_RANGE[0], MEMORY_ADDRESS_RANGE[1] + MEMORY_RW_BLOCK_SIZE, MEMORY_RW_BLOCK_SIZE) # status info for the UI status = chirp_common.Status() status.cur = 0 status.max = len(memory_addrs) status.msg = 'Cloning to radio...' radio.status_fn(status) for idx, addr in enumerate(memory_addrs): write_command = make_write_data_cmd( addr, radio._mmap[bptr:bptr+MEMORY_RW_BLOCK_SIZE], MEMORY_RW_BLOCK_SIZE) # LOG.debug('write data:\n%s' % util.hexprint(write_command)) write_response = send_serial_command(serial, write_command, 0x01) bptr += MEMORY_RW_BLOCK_SIZE if write_response == '\x0a': # NACK from radio, e.g. checksum wrongn LOG.debug('Radio returned 0x0a - NACK:') LOG.debug(' * write cmd:\n%s' % util.hexprint(write_command)) LOG.debug(' * write response:\n%s' % util.hexprint(write_response)) exit_program_mode(radio) raise errors.RadioError('Radio NACK\'d write command') # update UI status.cur = idx radio.status_fn(status) exit_program_mode(radio) except errors.RadioError: raise except Exception as e: raise errors.RadioError('Failed to download from radio: %s' % e) # Get the value of @bitfield @number of bits in from 0 def get_bitfield(bitfield, number): ''' Get the value of @bitfield @number of bits in ''' byteidx = number//8 bitidx = number - (byteidx * 8) return bitfield[byteidx] & (1 << bitidx) # Set the @value of @bitfield @number of bits in from 0 def set_bitfield(bitfield, number, value): ''' Set the @value of @bitfield @number of bits in ''' byteidx = number//8 bitidx = number - (byteidx * 8) if value is True: bitfield[byteidx] |= (1 << bitidx) else: bitfield[byteidx] &= ~(1 << bitidx) return bitfield # Translate the radio's version of a code as stored to a real code def dtcs_code_bits_to_val(highbit, lowbyte): return chirp_common.ALL_DTCS_CODES[highbit*256 + lowbyte] # Translate the radio's version of a tone as stored to a real tone def ctcss_tone_bits_to_val(tone_byte): # TODO use the custom setting 0x33 and ref the custom ctcss # field tone_byte = int(tone_byte) if tone_byte in TONE_MAP_VAL_TO_TONE: return TONE_MAP_VAL_TO_TONE[tone_byte] elif tone_byte == TONE_CUSTOM_CTCSS: LOG.info('custom ctcss not implemented (yet?).') else: raise errors.UnsupportedToneError('unknown ctcss tone value: %02x' % tone_byte) # Translate a real tone to the radio's version as stored def ctcss_code_val_to_bits(tone_value): if tone_value in TONE_MAP_TONE_TO_VAL: return TONE_MAP_TONE_TO_VAL[tone_value] else: raise errors.UnsupportedToneError('Tone %f not supported' % tone_value) # Translate a real code to the radio's version as stored def dtcs_code_val_to_bits(code): val = chirp_common.ALL_DTCS_CODES.index(code) return (val & 0xFF), ((val >> 8) & 0x01) class AnyTone778UVBase(chirp_common.CloneModeRadio, chirp_common.ExperimentalRadio): '''AnyTone 778UV and probably Retivis RT95 and others''' BAUD_RATE = 9600 # Replace this with your baud rate @classmethod def get_prompts(cls): rp = chirp_common.RadioPrompts() rp.experimental = \ ('This is experimental support for the %s %s. ' 'Please send in bug and enhancement requests!' % (cls.VENDOR, cls.MODEL)) return rp # Return information about this radio's features, including # how many memories it has, what bands it supports, etc def get_features(self): rf = chirp_common.RadioFeatures() rf.has_bank = False rf.has_settings = False rf.can_odd_split = True rf.has_name = True rf.has_offset = True rf.valid_name_length = 5 rf.valid_duplexes = ['', '+', '-', 'split'] rf.has_dtcs = True rf.has_rx_dtcs = True rf.has_dtcs_polarity = True rf.valid_dtcs_codes = chirp_common.ALL_DTCS_CODES rf.has_ctone = True rf.has_cross = True rf.valid_tmodes = ['', 'Tone', 'TSQL', 'DTCS', 'Cross'] rf.valid_cross_modes = ['Tone->Tone', 'Tone->DTCS', 'DTCS->Tone', 'DTCS->DTCS', 'DTCS->', '->DTCS', '->Tone'] rf.memory_bounds = (0, 199) # This radio supports memories 0-199 rf.valid_bands = [(144000000, 148000000), # Supports 2-meters (430000000, 450000000), # Supports 70-centimeters ] rf.valid_modes = ['FM', 'NFM'] rf.valid_power_levels = POWER_LEVELS rf.valid_tuning_steps = [2.5, 5, 6.25, 10, 12.5, 20, 25, 30, 50] return rf # Do a download of the radio from the serial port def sync_in(self): self._mmap = do_download(self) self.process_mmap() # Do an upload of the radio to the serial port def sync_out(self): do_upload(self) # Convert the raw byte array into a memory object structure def process_mmap(self): self._memobj = bitwise.parse(MEM_FORMAT, self._mmap) # Return a raw representation of the memory object, which # is very helpful for development def get_raw_memory(self, number): return repr(self._memobj.memory[number]) # Extract a high-level memory object from the low-level memory map # This is called to populate a memory in the UI def get_memory(self, number): # Get a low-level memory object mapped to the image _mem = self._memobj.memory[number] _mem_status = self._memobj.memory_status # Create a high-level memory object to return to the UI mem = chirp_common.Memory() mem.number = number # Set the memory number # Check if this memory is present in the occupied list mem.empty = get_bitfield(_mem_status.occupied_bitfield, number) == 0 if not mem.empty: # Check if this memory is in the scan enabled list mem.skip = '' if get_bitfield(_mem_status.scan_enabled_bitfield, number) == 0: mem.skip = 'S' # set the name mem.name = str(_mem.name).rstrip() # Set the alpha tag # Convert your low-level frequency and offset to Hertz mem.freq = int(_mem.freq) * 10 mem.offset = int(_mem.offset) * 10 # Set the duplex flags if _mem.duplex == DUPLEX_POSSPLIT: mem.duplex = '+' elif _mem.duplex == DUPLEX_NEGSPLIT: mem.duplex = '-' elif _mem.duplex == DUPLEX_NOSPLIT: mem.duplex = '' elif _mem.duplex == DUPLEX_ODDSPLIT: mem.duplex = 'split' else: LOG.error('%s: get_mem: unhandled duplex: %02x' % (mem.name, _mem.duplex)) # Set the channel width if _mem.channel_width == CHANNEL_WIDTH_25kHz: mem.mode = 'FM' elif _mem.channel_width == CHANNEL_WIDTH_20kHz: LOG.info( '%s: get_mem: promoting 20kHz channel width to 25kHz' % mem.name) mem.mode = 'FM' elif _mem.channel_width == CHANNEL_WIDTH_12d5kHz: mem.mode = 'NFM' else: LOG.error('%s: get_mem: unhandled channel width: 0x%02x' % (mem.name, _mem.channel_width)) # set the power level if _mem.txpower == TXPOWER_LOW: mem.power = POWER_LEVELS[0] elif _mem.txpower == TXPOWER_MED: mem.power = POWER_LEVELS[1] elif _mem.txpower == TXPOWER_HIGH: mem.power = POWER_LEVELS[2] else: LOG.error('%s: get_mem: unhandled power level: 0x%02x' % (mem.name, _mem.txpower)) # CTCSS Tones # TODO support custom ctcss tones here txtone = None rxtone = None rxcode = None txcode = None # check if dtcs tx is enabled if _mem.dtcs_encode_en: txcode = dtcs_code_bits_to_val(_mem.dtcs_encode_code_highbit, _mem.dtcs_encode_code) # check if dtcs rx is enabled if _mem.dtcs_decode_en: rxcode = dtcs_code_bits_to_val(_mem.dtcs_decode_code_highbit, _mem.dtcs_decode_code) if txcode is not None: LOG.debug('%s: get_mem dtcs_enc: %d' % (mem.name, txcode)) if rxcode is not None: LOG.debug('%s: get_mem dtcs_dec: %d' % (mem.name, rxcode)) # tsql set if radio squelches on tone tsql = _mem.tone_squelch_en # check if ctcss tx is enabled if _mem.ctcss_encode_en: txtone = ctcss_tone_bits_to_val(_mem.ctcss_enc_tone) # check if ctcss rx is enabled if _mem.ctcss_decode_en: rxtone = ctcss_tone_bits_to_val(_mem.ctcss_dec_tone) # Define this here to allow a readable if-else tree enabling tone # options enabled = 0 enabled |= (txtone is not None) * TONES_EN_TXTONE enabled |= (rxtone is not None) * TONES_EN_RXTONE enabled |= (txcode is not None) * TONES_EN_TXCODE enabled |= (rxcode is not None) * TONES_EN_RXCODE # Add some debugging output for the tone bitmap enstr = [] if enabled & TONES_EN_TXTONE: enstr += ['TONES_EN_TXTONE'] if enabled & TONES_EN_RXTONE: enstr += ['TONES_EN_RXTONE'] if enabled & TONES_EN_TXCODE: enstr += ['TONES_EN_TXCODE'] if enabled & TONES_EN_RXCODE: enstr += ['TONES_EN_RXCODE'] if enabled == 0: enstr = ['TONES_EN_NOTONE'] LOG.debug('%s: enabled = %s' % ( mem.name, '|'.join(enstr))) mem.tmode = '' if enabled == TONES_EN_NO_TONE: mem.tmode = '' elif enabled == TONES_EN_TXTONE: mem.tmode = 'Tone' mem.rtone = txtone elif enabled == TONES_EN_RXTONE and tsql: mem.tmode = 'Cross' mem.cross_mode = '->Tone' mem.ctone = rxtone elif enabled == (TONES_EN_TXTONE | TONES_EN_RXTONE) and tsql: if txtone == rxtone: # TSQL mem.tmode = 'TSQL' mem.ctone = txtone else: # Tone->Tone mem.tmode = 'Cross' mem.cross_mode = 'Tone->Tone' mem.ctone = rxtone mem.rtone = txtone elif enabled == TONES_EN_TXCODE: mem.tmode = 'Cross' mem.cross_mode = 'DTCS->' mem.dtcs = txcode elif enabled == TONES_EN_RXCODE and tsql: mem.tmode = 'Cross' mem.cross_mode = '->DTCS' mem.rx_dtcs = rxcode elif enabled == (TONES_EN_TXCODE | TONES_EN_RXCODE) and tsql: if rxcode == txcode: mem.tmode = 'DTCS' mem.rx_dtcs = rxcode else: mem.tmode = 'Cross' mem.cross_mode = 'DTCS->DTCS' mem.rx_dtcs = rxcode mem.dtcs = txcode elif enabled == (TONES_EN_TXCODE | TONES_EN_RXTONE) and tsql: mem.tmode = 'Cross' mem.cross_mode = 'DTCS->Tone' mem.dtcs = txcode mem.ctone = rxtone elif enabled == (TONES_EN_TXTONE | TONES_EN_RXCODE) and tsql: mem.tmode = 'Cross' mem.cross_mode = 'Tone->DTCS' mem.rx_dtcs = rxcode mem.rtone = txtone else: LOG.error('%s: Unhandled tmode enabled = %d.' % ( mem.name, enabled)) # set the dtcs polarity dtcs_pol_bit_to_str = {0: 'N', 1: 'R'} mem.dtcs_polarity = '%s%s' %\ (dtcs_pol_bit_to_str[_mem.dtcs_encode_invert == 1], dtcs_pol_bit_to_str[_mem.dtcs_decode_invert == 1]) return mem # Store details about a high-level memory to the memory map # This is called when a user edits a memory in the UI def set_memory(self, mem): # Get a low-level memory object mapped to the image _mem = self._memobj.memory[mem.number] _mem_status = self._memobj.memory_status # set the occupied bitfield _mem_status.occupied_bitfield = \ set_bitfield(_mem_status.occupied_bitfield, mem.number, not mem.empty) # set the scan add bitfield _mem_status.scan_enabled_bitfield = \ set_bitfield(_mem_status.scan_enabled_bitfield, mem.number, (not mem.empty) and (mem.skip != 'S')) if mem.empty: # Set the whole memory to 0xff _mem.set_raw('\xff' * (_mem.size() / 8)) else: _mem.set_raw('\x00' * (_mem.size() / 8)) _mem.freq = int(mem.freq / 10) _mem.offset = int(mem.offset / 10) _mem.name = mem.name.ljust(5)[:5] # Store the alpha tag # TODO support busy channel lockout - disabled for now _mem.busy_channel_lockout = BUSY_CHANNEL_LOCKOUT_OFF # Set duplex bitfields if mem.duplex == '+': _mem.duplex = DUPLEX_POSSPLIT elif mem.duplex == '-': _mem.duplex = DUPLEX_NEGSPLIT elif mem.duplex == '': _mem.duplex = DUPLEX_NOSPLIT elif mem.duplex == 'split': # TODO: this is an unverified punt! _mem.duplex = DUPLEX_ODDSPLIT else: LOG.error('%s: set_mem: unhandled duplex: %s' % (mem.name, mem.duplex)) # Set the channel width - remember we promote 20kHz channels to FM # on import, so don't handle them here if mem.mode == 'FM': _mem.channel_width = CHANNEL_WIDTH_25kHz elif mem.mode == 'NFM': _mem.channel_width = CHANNEL_WIDTH_12d5kHz else: LOG.error('%s: set_mem: unhandled mode: %s' % ( mem.name, mem.mode)) # set the power level if mem.power == POWER_LEVELS[0]: _mem.txpower = TXPOWER_LOW elif mem.power == POWER_LEVELS[1]: _mem.txpower = TXPOWER_MED elif mem.power == POWER_LEVELS[2]: _mem.txpower = TXPOWER_LOW else: LOG.error('%s: set_mem: unhandled power level: %s' % (mem.name, mem.power)) # TODO set the CTCSS values # TODO support custom ctcss tones here # Default - tones off, carrier sql _mem.ctcss_encode_en = 0 _mem.ctcss_decode_en = 0 _mem.tone_squelch_en = 0 _mem.ctcss_enc_tone = 0x00 _mem.ctcss_dec_tone = 0x00 _mem.customctcss = 0x00 _mem.dtcs_encode_en = 0 _mem.dtcs_encode_code_highbit = 0 _mem.dtcs_encode_code = 0 _mem.dtcs_encode_invert = 0 _mem.dtcs_decode_en = 0 _mem.dtcs_decode_code_highbit = 0 _mem.dtcs_decode_code = 0 _mem.dtcs_decode_invert = 0 dtcs_pol_str_to_bit = {'N': 0, 'R': 1} _mem.dtcs_encode_invert = dtcs_pol_str_to_bit[mem.dtcs_polarity[0]] _mem.dtcs_decode_invert = dtcs_pol_str_to_bit[mem.dtcs_polarity[1]] if mem.tmode == 'Tone': _mem.ctcss_encode_en = 1 _mem.ctcss_enc_tone = ctcss_code_val_to_bits(mem.rtone) elif mem.tmode == 'TSQL': _mem.ctcss_encode_en = 1 _mem.ctcss_enc_tone = ctcss_code_val_to_bits(mem.ctone) _mem.ctcss_decode_en = 1 _mem.tone_squelch_en = 1 _mem.ctcss_dec_tone = ctcss_code_val_to_bits(mem.ctone) elif mem.tmode == 'DTCS': _mem.dtcs_encode_en = 1 _mem.dtcs_encode_code, _mem.dtcs_encode_code_highbit = \ dtcs_code_val_to_bits(mem.rx_dtcs) _mem.dtcs_decode_en = 1 _mem.dtcs_decode_code, _mem.dtcs_decode_code_highbit = \ dtcs_code_val_to_bits(mem.rx_dtcs) _mem.tone_squelch_en = 1 elif mem.tmode == 'Cross': txmode, rxmode = mem.cross_mode.split('->') if txmode == 'Tone': _mem.ctcss_encode_en = 1 _mem.ctcss_enc_tone = ctcss_code_val_to_bits(mem.rtone) elif txmode == '': pass elif txmode == 'DTCS': _mem.dtcs_encode_en = 1 _mem.dtcs_encode_code, _mem.dtcs_encode_code_highbit = \ dtcs_code_val_to_bits(mem.dtcs) else: LOG.error('%s: unhandled cross TX mode: %s' % ( mem.name, mem.cross_mode)) if rxmode == 'Tone': _mem.ctcss_decode_en = 1 _mem.tone_squelch_en = 1 _mem.ctcss_dec_tone = ctcss_code_val_to_bits(mem.ctone) elif rxmode == '': pass elif rxmode == 'DTCS': _mem.dtcs_decode_en = 1 _mem.dtcs_decode_code, _mem.dtcs_decode_code_highbit = \ dtcs_code_val_to_bits(mem.rx_dtcs) _mem.tone_squelch_en = 1 else: LOG.error('%s: unhandled cross RX mode: %s' % ( mem.name, mem.cross_mode)) else: LOG.error('%s: Unhandled tmode/cross %s/%s.' % (mem.name, mem.tmode, mem.cross_mode)) LOG.debug('%s: tmode=%s, cross=%s, rtone=%f, ctone=%f' % ( mem.name, mem.tmode, mem.cross_mode, mem.rtone, mem.ctone)) LOG.debug('%s: CENC=%d, CDEC=%d, t(enc)=%02x, t(dec)=%02x' % ( mem.name, _mem.ctcss_encode_en, _mem.ctcss_decode_en, ctcss_code_val_to_bits(mem.rtone), ctcss_code_val_to_bits(mem.ctone))) # TODO set unknown defaults - hope that fixes Run time error 6, # overflow, from AT_778UV tool _mem.unknown1 = 0x00 _mem.unknown6 = 0x00 _mem.unknown7 = 0x00 _mem.unknown8 = 0x00 _mem.unknown9 = 0x00 _mem.unknown10 = 0x00 if has_future: @directory.register class AnyTone778UV(AnyTone778UVBase): VENDOR = "AnyTone" MODEL = "778UV" ALLOWED_RADIO_TYPES = ['AT778UV\x01V200'] @directory.register class RetevisRT95(AnyTone778UVBase): VENDOR = "Retevis" MODEL = "RT95" ALLOWED_RADIO_TYPES = [b'RT95\x00\x00\x00\x01V100'] @directory.register class CRTMicronUV(AnyTone778UVBase): VENDOR = "CRT" MODEL = "Micron UV" ALLOWED_RADIO_TYPES = [b'MICRON\x00\x01V100']