Project

General

Profile

Bug #2377 » kguv8d.py

As supplied by Jim Unroe - Stan White, 03/01/2015 02:08 PM

 
# Copyright 2014 Ron Wellsted <ron@wellsted.org.uk> M0RNW
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

"""Wouxun KG-UV8D radio management module"""

import time
import os
from chirp import util, chirp_common, bitwise, memmap, errors, directory
from chirp.settings import RadioSetting, RadioSettingGroup, \
RadioSettingValueBoolean, RadioSettingValueList, \
RadioSettingValueInteger, RadioSettingValueString

if os.getenv("CHIRP_DEBUG"):
CHIRP_DEBUG = True
else:
CHIRP_DEBUG = False

CMD_ID = 128
CMD_END = 129
CMD_RD = 130
CMD_WR = 131

MEM_VALID = 158

AB_LIST = ["A", "B"]
STEPS = [5.0, 6.25, 10.0, 12.5, 25.0, 50.0, 100.0]
STEP_LIST = [str(x) for x in STEPS]
ROGER_LIST = ["Off", "BOT", "EOT", "Both"]
TIMEOUT_LIST = ["Off"] + [str(x) + "s" for x in range(15, 901, 15)]
VOX_LIST = ["Off"] + ["%s" % x for x in range(1, 10)]
BANDWIDTH_LIST = ["Narrow", "Wide"]
VOICE_LIST = ["Off", "On"]
LANGUAGE_LIST = ["Chinese", "English"]
SCANMODE_LIST = ["TO", "CO", "SE"]
PF1KEY_LIST = ["Call", "VFTX"]
PF3KEY_LIST = ["Scan", "Lamp", "Tele Alarm", "SOS-CH", "Radio", "Disable"]
WORKMODE_LIST = ["VFO", "Channel No.", "Frequency + No", "Name"]
BACKLIGHT_LIST = ["Always On"] + [str(x) + "s" for x in range(1, 21)] + \
["Always Off"]
OFFSET_LIST = ["+", "-"]
PONMSG_LIST = ["Bitmap", "Battery Volts"]
SPMUTE_LIST = ["QT", "QT+DTMF", "QT*DTMF"]
DTMFST_LIST = ["DT-ST", "ANI-ST", "DT-ANI", "Off"]
RPTSET_LIST = ["X-DIRPT", "X-TWRPT"]
ALERTS = [1750, 2100, 1000, 1450]
ALERTS_LIST = [str(x) for x in ALERTS]
PTTID_LIST = ["BOT", "EOT", "Both"]
LIST_10 = ["Off"] + ["%s" % x for x in range(1, 11)]
SCANGRP_LIST = ["All"] + ["%s" % x for x in range(1, 11)]
SCQT_LIST = ["All", "Decoder", "Encoder"]
SMUTESET_LIST = ["Off", "Tx", "Rx", "Tx/Rx"]
POWER_LIST = ["Lo", "Hi"]

# memory slot 0 is not used, start at 1 (so need 1000 slots, not 999)
# structure elements whose name starts with x are currently unidentified
_MEM_FORMAT = """
#seekto 0x0044;
struct {
u32 rx_start;
u32 rx_stop;
u32 tx_start;
u32 tx_stop;
} uhf_limits;

#seekto 0x0054;
struct {
u32 rx_start;
u32 rx_stop;
u32 tx_start;
u32 tx_stop;
} vhf_limits;

#seekto 0x0400;
struct {
char model[8];
u8 unknown[2];
char oem1[10];
char oem2[10];
char unknown2[8];
char version[10];
u8 unknown3[6];
char date[8];
} oem_info;

#seekto 0x0480;
struct {
u16 lower;
u16 upper;
} scan_groups[10];

#seekto 0x0500;
struct {
u8 call_code[6];
} call_groups[20];

#seekto 0x0580;
struct {
char call_name[6];
} call_group_name[20];

#seekto 0x0800;
struct {
u8 ponmsg;
char dispstr[15];
u8 x0810;
u8 x0811;
u8 x0812;
u8 x0813;
u8 x0814;
u8 voice;
u8 timeout;
u8 toalarm;
u8 channel_menu;
u8 power_save;
u8 autolock;
u8 keylock;
u8 beep;
u8 stopwatch;
u8 vox;
u8 scan_rev;
u8 backlight;
u8 roger_beep;
u8 mode_sw_pwd[6];
u8 reset_pwd[6];
u16 pri_ch;
u8 ani_sw;
u8 ptt_delay;
u8 ani[6];
u8 dtmf_st;
u8 bcl_a;
u8 bcl_b;
u8 ptt_id;
u8 prich_sw;
u8 rpt_set;
u8 rpt_spk;
u8 rpt_ptt;
u8 alert;
u8 pf1_func;
u8 pf3_func;
u8 workmode_a;
u8 workmode_b;
u8 x0845;
u8 dtmf_tx_time;
u8 dtmf_interval;
u8 main_ab;
u16 work_cha;
u16 work_chb;
u8 x084d;
u8 x084e;
u8 x084f;
u8 x0850;
u8 x0851;
u8 x0852;
u8 x0853;
u8 x0854;
u8 rpt_mode;
u8 language;
u8 x0857;
u8 x0858;
u8 x0859;
u8 x085a;
u8 x085b;
u8 x085c;
u8 x085d;
u8 x085e;
u8 single_display;
u8 ring;
u8 scg_a;
u8 scg_b;
u8 x0863;
u8 rpt_tone;
u8 rpt_hold;
u8 scan_det;
u8 sc_qt;
u8 x0868;
u8 smuteset;
u8 callcode;
} settings;

#seekto 0x0880;
struct {
u32 rxfreq;
u32 txoffset;
u16 rxtone;
u16 txtone;
u8 unknown1:6,
power:1,
unknown2:1;
u8 unknown3:1,
shift_dir:2
unknown4:2,
mute_mode:2,
iswide:1;
u8 step;
u8 squelch;
} vfoa;

#seekto 0x08c0;
struct {
u32 rxfreq;
u32 txoffset;
u16 rxtone;
u16 txtone;
u8 unknown1:6,
power:1,
unknown2:1;
u8 unknown3:1,
shift_dir:2
unknown4:2,
mute_mode:2,
iswide:1;
u8 step;
u8 squelch;
} vfob;

#seekto 0x0900;
struct {
u32 rxfreq;
u32 txfreq;
u16 rxtone;
u16 txtone;
u8 unknown1:6,
power:1,
unknown2:1;
u8 unknown3:2,
scan_add:1,
unknown4:2,
mute_mode:2,
iswide:1;
u16 padding;
} memory[1000];

#seekto 0x4780;
struct {
u8 name[8];
} names[1000];

#seekto 0x6700;
u8 valid[1000];
"""

# Support for the Wouxun KG-UV8D radio
# Serial coms are at 19200 baud
# The data is passed in variable length records
# Record structure:
# Offset Usage
# 0 start of record (\x7d)
# 1 Command (\x80 Identify \x81 End/Reboot \x82 Read \x83 Write)
# 2 direction (\xff PC-> Radio, \x00 Radio -> PC)
# 3 length of payload (excluding header/checksum) (n)
# 4 payload (n bytes)
# 4+n+1 checksum - byte sum (% 256) of bytes 1 -> 4+n
#
# Memory Read Records:
# the payload is 3 bytes, first 2 are offset (big endian),
# 3rd is number of bytes to read
# Memory Write Records:
# the maximum payload size (from the Wouxun software) seems to be 66 bytes
# (2 bytes location + 64 bytes data).


@directory.register
class KGUV8DRadio(chirp_common.CloneModeRadio,
chirp_common.ExperimentalRadio):
"""Wouxun KG-UV8D"""
VENDOR = "Wouxun"
MODEL = "KG-UV8D"
_model = "KG-UV8D"
_file_ident = "KGUV8D"
BAUD_RATE = 19200
POWER_LEVELS = [chirp_common.PowerLevel("L", watts=1),
chirp_common.PowerLevel("H", watts=5)]
_mmap = ""

def _checksum(self, data):
cs = 0
for byte in data:
cs += ord(byte)
return cs % 256

def _write_record(self, cmd, payload=None):
# build the packet
_packet = '\x7d' + chr(cmd) + '\xff'
_length = 0
if payload:
_length = len(payload)
# update the length field
_packet += chr(_length)
if payload:
# add the chars to the packet
_packet += payload
# calculate and add the checksum to the packet
_packet += chr(self._checksum(_packet[1:]))
if CHIRP_DEBUG:
print "Sent:\n%s" % util.hexprint(_packet)
self.pipe.write(_packet)

def _read_record(self):
# read 4 chars for the header
_header = self.pipe.read(4)
_length = ord(_header[3])
_packet = self.pipe.read(_length)
_cs = self._checksum(_header[1:])
_cs += self._checksum(_packet)
_cs %= 256
_rcs = ord(self.pipe.read(1))
if CHIRP_DEBUG:
print "_cs =", _cs
print "_rcs=", _rcs
return (_rcs != _cs, _packet)

# Identify the radio
#
# A Gotcha: the first identify packet returns a bad checksum, subsequent
# attempts return the correct checksum... (well it does on my radio!)
#
# The ID record returned by the radio also includes the current frequency range
# as 4 bytes big-endian in 10Hz increments
#
# Offset
# 0:10 Model, zero padded (Use first 7 chars for 'KG-UV8D')
# 11:14 UHF rx lower limit (in units of 10Hz)
# 15:18 UHF rx upper limit
# 19:22 UHF tx lower limit
# 23:26 UHF tx upper limit
# 27:30 VHF rx lower limit
# 31:34 VHF rx upper limit
# 35:38 VHF tx lower limit
# 39:42 VHF tx upper limit
##
@classmethod
def match_model(cls, filedata, filename):
return cls._file_ident in filedata[0x400:0x408]

def _identify(self):
"""Do the identification dance"""
for _i in range(0, 10):
self._write_record(CMD_ID)
_chksum_err, _resp = self._read_record()
if CHIRP_DEBUG:
print "Got:\n%s" % util.hexprint(_resp)
if _chksum_err:
print "Checksum error: retrying ident..."
time.sleep(0.100)
continue
if CHIRP_DEBUG:
print "Model %s" % util.hexprint(_resp[0:7])
if _resp[0:7] == self._model:
return
if len(_resp) == 0:
raise Exception("Radio not responding")
else:
raise Exception("Unable to identify radio")

def _finish(self):
self._write_record(CMD_END)

def process_mmap(self):
self._memobj = bitwise.parse(_MEM_FORMAT, self._mmap)

def sync_in(self):
try:
self._mmap = self._download()
except errors.RadioError:
raise
except Exception, e:
raise errors.RadioError("Failed to communicate with radio: %s" % e)
self.process_mmap()

def sync_out(self):
self._upload()

# TODO: This is a dumb, brute force method of downlolading the memory.
# it would be smarter to only load the active areas and none of
# the padding/unused areas.
def _download(self):
"""Talk to a wouxun KG-UV8D and do a download"""
try:
self._identify()
return self._do_download(0, 32768, 64)
except errors.RadioError:
raise
except Exception, e:
raise errors.RadioError("Failed to communicate with radio: %s" % e)

def _do_download(self, start, end, blocksize):
# allocate & fill memory
image = ""
for i in range(start, end, blocksize):
req = chr(i / 256) + chr(i % 256) + chr(blocksize)
self._write_record(CMD_RD, req)
cs_error, resp = self._read_record()
if cs_error:
# TODO: probably should retry a few times here
print util.hexprint(resp)
raise Exception("Checksum error on read")
if CHIRP_DEBUG:
print "Got:\n%s" % util.hexprint(resp)
image += resp[2:]
if self.status_fn:
status = chirp_common.Status()
status.cur = i
status.max = end
status.msg = "Cloning from radio"
self.status_fn(status)
self._finish()
return memmap.MemoryMap(''.join(image))

def _upload(self):
"""Talk to a wouxun KG-UV8D and do a upload"""
try:
self._identify()
self._do_upload(0, 32768, 64)
except errors.RadioError:
raise
except Exception, e:
raise errors.RadioError("Failed to communicate with radio: %s" % e)
return

def _do_upload(self, start, end, blocksize):
ptr = start
for i in range(start, end, blocksize):
req = chr(i / 256) + chr(i % 256)
chunk = self.get_mmap()[ptr:ptr + blocksize]
self._write_record(CMD_WR, req + chunk)
if CHIRP_DEBUG:
print util.hexprint(req + chunk)
cserr, ack = self._read_record()
if CHIRP_DEBUG:
print util.hexprint(ack)
j = ord(ack[0]) * 256 + ord(ack[1])
if cserr or j != ptr:
raise Exception("Radio did not ack block %i" % ptr)
ptr += blocksize
if self.status_fn:
status = chirp_common.Status()
status.cur = i
status.max = end
status.msg = "Cloning to radio"
self.status_fn(status)
self._finish()

def get_features(self):
# TODO: This probably needs to be setup correctly to match the true
# features of the radio
rf = chirp_common.RadioFeatures()
rf.has_settings = True
rf.has_ctone = True
rf.has_rx_dtcs = True
rf.has_cross = True
rf.has_tuning_step = False
rf.has_bank = False
rf.can_odd_split = True
rf.valid_skips = ["", "S"]
rf.valid_tmodes = ["", "Tone", "TSQL", "DTCS", "Cross"]
rf.valid_cross_modes = [
"Tone->Tone",
"Tone->DTCS",
"DTCS->Tone",
"DTCS->",
"->Tone",
"->DTCS",
"DTCS->DTCS",
]
rf.valid_modes = ["FM", "NFM"]
rf.valid_power_levels = self.POWER_LEVELS
rf.valid_name_length = 8
rf.valid_duplexes = ["", "+", "-", "split"]
rf.valid_bands = [(134000000, 175000000), # supports 2m
(400000000, 520000000)] # supports 70cm
rf.valid_characters = chirp_common.CHARSET_ASCII
rf.memory_bounds = (1, 999) # 999 memories
return rf

@classmethod
def get_prompts(cls):
rp = chirp_common.RadioPrompts()
rp.experimental = ("This radio driver is currently under development. "
"There are no known issues with it, but you should "
"proceed with caution.")
return rp

def get_raw_memory(self, number):
return repr(self._memobj.memory[number])

def _get_tone(self, _mem, mem):
def _get_dcs(val):
code = int("%03o" % (val & 0x07FF))
pol = (val & 0x8000) and "R" or "N"
return code, pol

tpol = False
if _mem.txtone != 0xFFFF and (_mem.txtone & 0x2800) == 0x2800:
tcode, tpol = _get_dcs(_mem.txtone)
mem.dtcs = tcode
txmode = "DTCS"
elif _mem.txtone != 0xFFFF and _mem.txtone != 0x0:
mem.rtone = (_mem.txtone & 0x7fff) / 10.0
txmode = "Tone"
else:
txmode = ""

rpol = False
if _mem.rxtone != 0xFFFF and (_mem.rxtone & 0x2800) == 0x2800:
rcode, rpol = _get_dcs(_mem.rxtone)
mem.rx_dtcs = rcode
rxmode = "DTCS"
elif _mem.rxtone != 0xFFFF and _mem.rxtone != 0x0:
mem.ctone = (_mem.rxtone & 0x7fff) / 10.0
rxmode = "Tone"
else:
rxmode = ""

if txmode == "Tone" and not rxmode:
mem.tmode = "Tone"
elif txmode == rxmode and txmode == "Tone" and mem.rtone == mem.ctone:
mem.tmode = "TSQL"
elif txmode == rxmode and txmode == "DTCS" and mem.dtcs == mem.rx_dtcs:
mem.tmode = "DTCS"
elif rxmode or txmode:
mem.tmode = "Cross"
mem.cross_mode = "%s->%s" % (txmode, rxmode)

# always set it even if no dtcs is used
mem.dtcs_polarity = "%s%s" % (tpol or "N", rpol or "N")

if os.getenv("CHIRP_DEBUG"):
print "Got TX %s (%i) RX %s (%i)" % (txmode, _mem.txtone,
rxmode, _mem.rxtone)

def get_memory(self, number):
_mem = self._memobj.memory[number]
_nam = self._memobj.names[number]

mem = chirp_common.Memory()
mem.number = number
_valid = self._memobj.valid[mem.number]

if CHIRP_DEBUG:
print number, _valid == MEM_VALID
if _valid != MEM_VALID:
mem.empty = True
return mem
else:
mem.empty = False

mem.freq = int(_mem.rxfreq) * 10

if int(_mem.rxfreq) == int(_mem.txfreq):
mem.duplex = ""
mem.offset = 0
elif abs(int(_mem.rxfreq) * 10 - int(_mem.txfreq) * 10) > 70000000:
mem.duplex = "split"
mem.offset = int(_mem.txfreq) * 10
else:
mem.duplex = int(_mem.rxfreq) > int(_mem.txfreq) and "-" or "+"
mem.offset = abs(int(_mem.rxfreq) - int(_mem.txfreq)) * 10

for char in _nam.name:
if char != 0:
mem.name += chr(char)
mem.name = mem.name.rstrip()

self._get_tone(_mem, mem)

mem.skip = "" if bool(_mem.scan_add) else "S"

mem.power = self.POWER_LEVELS[_mem.power]
mem.mode = _mem.iswide and "FM" or "NFM"
return mem

def _set_tone(self, mem, _mem):
def _set_dcs(code, pol):
val = int("%i" % code, 8) + 0x2800
if pol == "R":
val += 0x8000
return val

if mem.tmode == "Cross":
tx_mode, rx_mode = mem.cross_mode.split("->")
elif mem.tmode == "Tone":
tx_mode = mem.tmode
rx_mode = None
else:
tx_mode = rx_mode = mem.tmode

if tx_mode == "DTCS":
_mem.txtone = mem.tmode != "DTCS" and \
_set_dcs(mem.dtcs, mem.dtcs_polarity[0]) or \
_set_dcs(mem.rx_dtcs, mem.dtcs_polarity[0])
_mem.txtone += 0x4000
elif tx_mode:
_mem.txtone = tx_mode == "Tone" and \
int(mem.rtone * 10) or int(mem.ctone * 10)
_mem.txtone += 0x8000
else:
_mem.txtone = 0

if rx_mode == "DTCS":
_mem.rxtone = _set_dcs(mem.rx_dtcs, mem.dtcs_polarity[1])
_mem.rxtone += 0x4000
elif rx_mode:
_mem.rxtone = int(mem.ctone * 10)
_mem.rxtone += 0x8000
else:
_mem.rxtone = 0

if CHIRP_DEBUG:
print "Set TX %s (%i) RX %s (%i)" % (tx_mode, _mem.txtone,
rx_mode, _mem.rxtone)

def set_memory(self, mem):
number = mem.number

_mem = self._memobj.memory[number]
_nam = self._memobj.names[number]

if mem.empty:
_mem.set_raw("\x00" * (_mem.size() / 8))
self._memobj.valid[number] = 0
self._memobj.names[number].set_raw("\x00" * (_nam.size() / 8))
return

_mem.rxfreq = int(mem.freq / 10)
if mem.duplex == "split":
_mem.txfreq = int(mem.offset / 10)
elif mem.duplex == "off":
for i in range(0, 4):
_mem.txfreq[i].set_raw("\xFF")
elif mem.duplex == "+":
_mem.txfreq = int(mem.freq / 10) + int(mem.offset / 10)
elif mem.duplex == "-":
_mem.txfreq = int(mem.freq / 10) - int(mem.offset / 10)
else:
_mem.txfreq = int(mem.freq / 10)
_mem.scan_add = int(mem.skip != "S")
_mem.iswide = int(mem.mode == "FM")
# set the tone
self._set_tone(mem, _mem)
# set the power
if mem.power:
_mem.power = self.POWER_LEVELS.index(mem.power)
else:
_mem.power = True
# TODO: sett the correct mute mode, for now just
# set to mute mode to QT (not QT+DTMF or QT*DTMF)
_mem.mute_mode = 0

for i in range(0, len(_nam.name)):
if i < len(mem.name) and mem.name[i]:
_nam.name[i] = ord(mem.name[i])
else:
_nam.name[i] = 0x0
self._memobj.valid[mem.number] = MEM_VALID

def _get_settings(self):
_settings = self._memobj.settings
_vfoa = self._memobj.vfoa
_vfob = self._memobj.vfob
cfg_grp = RadioSettingGroup("cfg_grp", "Configuration Settings")
vfoa_grp = RadioSettingGroup("vfoa_grp", "VFO A Settings")
vfob_grp = RadioSettingGroup("vfob_grp", "VFO B Settings")
key_grp = RadioSettingGroup("key_grp", "Key Settings")
scn_grp = RadioSettingGroup("scn_grp", "Scan Group")
cal_grp = RadioSettingGroup("cal_grp", "Call Group")
lmt_grp = RadioSettingGroup("lmt_grp", "Frequency Limits")
oem_grp = RadioSettingGroup("oem_grp", "OEM Info")
group = RadioSettingGroup("top", "All Settings", cfg_grp, vfoa_grp,
vfob_grp, key_grp, scn_grp, cal_grp, lmt_grp, oem_grp)

#
# Configuration Settings
#
rs = RadioSetting("ponmsg", "Poweron message", RadioSettingValueList(
PONMSG_LIST, PONMSG_LIST[_settings.ponmsg]))
cfg_grp.append(rs)
rs = RadioSetting("voice", "Voice Guide", RadioSettingValueBoolean(
_settings.voice))
cfg_grp.append(rs)
rs = RadioSetting("language", "Language", RadioSettingValueList(
LANGUAGE_LIST, LANGUAGE_LIST[_settings.language]))
cfg_grp.append(rs)
rs = RadioSetting("timeout", "Timeout Timer", RadioSettingValueInteger(
15, 900, _settings.timeout * 15, 15))
cfg_grp.append(rs)
rs = RadioSetting("toalarm", "Timeout Alarm",
RadioSettingValueInteger(0, 10, _settings.toalarm))
cfg_grp.append(rs)
rs = RadioSetting("channel_menu", "Menu available in channel mode",
RadioSettingValueBoolean(_settings.channel_menu))
cfg_grp.append(rs)
rs = RadioSetting("power_save", "Power save", RadioSettingValueBoolean(
_settings.power_save))
cfg_grp.append(rs)
rs = RadioSetting("autolock", "Autolock", RadioSettingValueBoolean(
_settings.autolock))
cfg_grp.append(rs)
rs = RadioSetting("keylock", "Keypad Lock", RadioSettingValueBoolean(
_settings.keylock))
cfg_grp.append(rs)
rs = RadioSetting("beep", "Keypad Beep", RadioSettingValueBoolean(
_settings.keylock))
cfg_grp.append(rs)
rs = RadioSetting("stopwatch", "Stopwatch", RadioSettingValueBoolean(
_settings.keylock))
cfg_grp.append(rs)

#
# VFO A Settings
#
rs = RadioSetting("vfoa_mode", "VFO A Workmode", RadioSettingValueList(
WORKMODE_LIST, WORKMODE_LIST[_settings.workmode_a]))
vfoa_grp.append(rs)
rs = RadioSetting("vfoa_chan", "VFO A Channel",
RadioSettingValueInteger(1, 999, _settings.work_cha))
vfoa_grp.append(rs)
rs = RadioSetting("rxfreqa", "VFO A Rx Frequency",
RadioSettingValueInteger(134000000, 520000000,
_vfoa.rxfreq * 10, 5000))
vfoa_grp.append(rs)
# u32 txoffset;
# u16 rxtone;
# u16 txtone;
# u8 unknown1:6,
rs = RadioSetting("vfoa_power", "VFO A Power", RadioSettingValueList(
POWER_LIST, POWER_LIST[_vfoa.power]))
vfoa_grp.append(rs)
# unknown2:1;
# u8 unknown3:1,
# shift_dir:2
# unknown4:2,
rs = RadioSetting("vfoa_mute_mode", "VFO A Mute", RadioSettingValueList(
SPMUTE_LIST, SPMUTE_LIST[_vfoa.mute_mode]))
vfoa_grp.append(rs)
rs = RadioSetting("vfoa_iswide", "VFO A NBFM", RadioSettingValueList(
BANDWIDTH_LIST, BANDWIDTH_LIST[_vfoa.iswide]))
vfoa_grp.append(rs)
rs = RadioSetting("vfoa_step", "VFO A Step (kHz)",
RadioSettingValueList(STEP_LIST, STEP_LIST[_vfoa.step]))
vfoa_grp.append(rs)
rs = RadioSetting("vfoa_squelch", "VFO A Squelch",
RadioSettingValueList(LIST_10, LIST_10[_vfoa.squelch]))
vfoa_grp.append(rs)
#
# VFO B Settings
#
rs = RadioSetting("vfob_mode", "VFO B Workmode", RadioSettingValueList(
WORKMODE_LIST, WORKMODE_LIST[_settings.workmode_b]))
vfob_grp.append(rs)
rs = RadioSetting("vfob_chan", "VFO B Channel",
RadioSettingValueInteger(1, 999, _settings.work_chb))
vfob_grp.append(rs)
rs = RadioSetting("rxfreqb", "VFO B Rx Frequency",
RadioSettingValueInteger(134000000, 520000000,
_vfob.rxfreq * 10, 5000))
vfob_grp.append(rs)
# u32 txoffset;
# u16 rxtone;
# u16 txtone;
# u8 unknown1:6,
rs = RadioSetting("vfob_power", "VFO B Power", RadioSettingValueList(
POWER_LIST, POWER_LIST[_vfob.power]))
vfob_grp.append(rs)
# unknown2:1;
# u8 unknown3:1,
# shift_dir:2
# unknown4:2,
rs = RadioSetting("vfob_mute_mode", "VFO B Mute", RadioSettingValueList(
SPMUTE_LIST, SPMUTE_LIST[_vfob.mute_mode]))
vfob_grp.append(rs)
rs = RadioSetting("vfob_iswide", "VFO B NBFM", RadioSettingValueList(
BANDWIDTH_LIST, BANDWIDTH_LIST[_vfob.iswide]))
vfob_grp.append(rs)
rs = RadioSetting("vfob_step", "VFO B Step (kHz)",
RadioSettingValueList(STEP_LIST, STEP_LIST[_vfob.step]))
vfob_grp.append(rs)
rs = RadioSetting("vfob_squelch", "VFO B Squelch",
RadioSettingValueList(LIST_10, LIST_10[_vfob.squelch]))
vfob_grp.append(rs)


#
# Key Settings
#
_msg = str(_settings.dispstr).split("\0")[0]
val = RadioSettingValueString(0, 15, _msg)
val.set_mutable(True)
rs = RadioSetting("dispstr", "Display Message", val)
key_grp.append(rs)
_ani = ""
for i in _settings.ani:
if i < 10:
_ani += chr(i + 0x30)
else:
break
val = RadioSettingValueString(0, 6, _ani)
val.set_mutable(True)
rs = RadioSetting("ani", "ANI code", val)
key_grp.append(rs)
rs = RadioSetting("pf1_func", "PF1 Key function", RadioSettingValueList(
PF1KEY_LIST,
PF1KEY_LIST[self._memobj.settings.pf1_func]))
key_grp.append(rs)
rs = RadioSetting("pf3_func", "PF3 Key function", RadioSettingValueList(
PF3KEY_LIST,
PF3KEY_LIST[self._memobj.settings.pf3_func]))
key_grp.append(rs)

#
# Scan Group Settings
#
# settings:
# u8 scg_a;
# u8 scg_b;
#
# struct {
# u16 lower;
# u16 upper;
# } scan_groups[10];


#
# Call group settings
#

#
# Limits settings
#
rs = RadioSetting("urx_start", "UHF RX Lower Limit",
RadioSettingValueInteger(400000000, 520000000,
self._memobj.uhf_limits.rx_start * 10, 5000))
lmt_grp.append(rs)
rs = RadioSetting("urx_stop", "UHF RX Upper Limit",
RadioSettingValueInteger(400000000, 520000000,
self._memobj.uhf_limits.rx_stop * 10, 5000))
lmt_grp.append(rs)
rs = RadioSetting("utx_start", "UHF TX Lower Limit",
RadioSettingValueInteger(400000000, 520000000,
self._memobj.uhf_limits.tx_start * 10, 5000))
lmt_grp.append(rs)
rs = RadioSetting("utx_stop", "UHF TX Upper Limit",
RadioSettingValueInteger(400000000, 520000000,
self._memobj.uhf_limits.tx_stop * 10, 5000))
lmt_grp.append(rs)
rs = RadioSetting("vrx_start", "VHF RX Lower Limit",
RadioSettingValueInteger(134000000, 174997500,
self._memobj.vhf_limits.rx_start * 10, 5000))
lmt_grp.append(rs)
rs = RadioSetting("vrx_stop", "VHF RX Upper Limit",
RadioSettingValueInteger(134000000, 174997500,
self._memobj.vhf_limits.rx_stop * 10, 5000))
lmt_grp.append(rs)
rs = RadioSetting("vtx_start", "VHF TX Lower Limit",
RadioSettingValueInteger(134000000, 174997500,
self._memobj.vhf_limits.tx_start * 10, 5000))
lmt_grp.append(rs)
rs = RadioSetting("vtx_stop", "VHF TX Upper Limit",
RadioSettingValueInteger(134000000, 174997500,
self._memobj.vhf_limits.tx_stop * 10, 5000))
lmt_grp.append(rs)

#
# OEM info
#
_str = str(self._memobj.oem_info.model).split("\0")[0]
val = RadioSettingValueString(0, 15, _str)
val.set_mutable(False)
rs = RadioSetting("model", "Model", val)
oem_grp.append(rs)
#_str = str(self._memobj.oem_info.oem1).split("\0")[0]
#val = RadioSettingValueString(0, 15, _str)
#val.set_mutable(False)
#rs = RadioSetting("oem1", "OEM String 1", val)
#oem_grp.append(rs)
#_str = str(self._memobj.oem_info.oem2).split("\0")[0]
#val = RadioSettingValueString(0, 15, _str)
#val.set_mutable(False)
#rs = RadioSetting("oem2", "OEM String 2", val)
#oem_grp.append(rs)
_str = str(self._memobj.oem_info.version).split("\0")[0]
val = RadioSettingValueString(0, 15, _str)
val.set_mutable(False)
rs = RadioSetting("version", "Software Version", val)
oem_grp.append(rs)
_str = str(self._memobj.oem_info.date).split("\0")[0]
val = RadioSettingValueString(0, 15, _str)
val.set_mutable(False)
rs = RadioSetting("date", "OEM Date", val)
oem_grp.append(rs)

return group

def get_settings(self):
try:
return self._get_settings()
except:
import traceback
print "Failed to parse settings:"
traceback.print_exc()
return None
(1-1/3)