Project

General

Profile

Bug #221 » ft7800.py

Modified module for testing - Filippi Marco, 07/18/2014 04:05 AM

 
# Copyright 2010 Dan Smith <dsmith@danplanet.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

import time
from chirp import chirp_common, yaesu_clone, memmap, directory
from chirp import bitwise, errors
from textwrap import dedent
from chirp.settings import RadioSetting, RadioSettingGroup, \
RadioSettingValueInteger, RadioSettingValueList, \
RadioSettingValueBoolean, RadioSettingValueString
import os, re

from collections import defaultdict

if os.getenv("CHIRP_DEBUG"):
CHIRP_DEBUG = True
else:
CHIRP_DEBUG = False

ACK = chr(0x06)

MEM_FORMAT = """
#seekto 0x002A;
u8 banks_unk2;
u8 current_channel;
u8 unk3;
u8 unk4;
u8 current_menu;

#seekto 0x0035;
u8 banks_unk1;

#seekto 0x00C8;
struct {
u8 memory[16];
} dtmf[16];

#seekto 0x003A;
struct {
u8 apo;
u8 tot;
u8 lock:3,
arts_interval:1,
unk1a:1,
prog_panel_acc:3;
u8 prog_p1;
u8 prog_p2;
u8 prog_p3;
u8 prog_p4;
u8 rf_sql;
u8 inet_dtmf_mem:4,
inet_dtmf_digit:4;
u8 arts_cwid_enable:1,
prog_tone_vm:1,
unk2a:1,
hyper_write:2,
memory_only:1,
dimmer:2;
u8 beep_scan:1,
beep_edge:1,
beep_key:1,
unk3a:1,
inet_mode:1,
unk3b:1,
dtmf_speed:2;
u8 dcs_polarity:2,
smart_search:1,
priority_revert:1,
unk4a:1,
dtmf_delay:3;
u8 unk5a:3,
microphone_type:1,
scan_resume:1,
unk5b:1,
arts_mode:2;
u8 unk6;
} settings;

struct mem_struct {
u8 used:1,
unknown1:1,
mode:2,
unknown2:1,
duplex:3;
bbcd freq[3];
u8 clockshift:1,
tune_step:3,
unknown5:1, // TODO: tmode has extended settings, at least 4 bits
tmode:3;
bbcd split[3];
u8 power:2,
tone:6;
u8 unknown6:1,
dtcs:7;
u8 unknown7[2];
u8 offset;
u8 unknown9[3];
};

#seekto 0x0048;
struct mem_struct vfos[5];

#seekto 0x01C8;
struct mem_struct homes[5];

#seekto 0x0218;
u8 arts_cwid[6];

#seekto 0x04C8;
struct mem_struct memory[1000];

#seekto 0x4988;
struct {
char name[6];
u8 enabled:1,
unknown1:7;
u8 used:1,
unknown2:7;
} names[1000];

#seekto 0x6c48;
struct {
u32 bitmap[32];
} bank_channels[20];

#seekto 0x7648;
struct {
u8 skip0:2,
skip1:2,
skip2:2,
skip3:2;
} flags[250];

#seekto 0x7B48;
u8 checksum;
"""

MODES = ["FM", "AM", "NFM"]
TMODES = ["", "Tone", "TSQL", "DTCS-R", "DTCS"]
DUPLEX = ["", "", "-", "+", "split"]
STEPS = [5.0, 10.0, 12.5, 15.0, 20.0, 25.0, 50.0, 100.0]
SKIPS = ["", "S", "P", ""]

CHARSET = ["%i" % int(x) for x in range(0, 10)] + \
[chr(x) for x in range(ord("A"), ord("Z")+1)] + \
list(" " * 10) + \
list("*+,- /| [ ] _") + \
list("\x00" * 100)

DTMFCHARSET = list("0123456789ABCD*#")

def _send(ser, data):
for i in data:
ser.write(i)
time.sleep(0.002)
echo = ser.read(len(data))
if echo != data:
raise errors.RadioError("Error reading echo (Bad cable?)")

def _download(radio):
data = ""

chunk = ""
for i in range(0, 30):
chunk += radio.pipe.read(radio._block_lengths[0])
if chunk:
break

if len(chunk) != radio._block_lengths[0]:
raise Exception("Failed to read header (%i)" % len(chunk))
data += chunk

_send(radio.pipe, ACK)

for i in range(0, radio._block_lengths[1], radio._block_size):
chunk = radio.pipe.read(radio._block_size)
data += chunk
if len(chunk) != radio._block_size:
break
time.sleep(0.01)
_send(radio.pipe, ACK)
if radio.status_fn:
status = chirp_common.Status()
status.max = radio.get_memsize()
status.cur = i+len(chunk)
status.msg = "Cloning from radio"
radio.status_fn(status)

data += radio.pipe.read(1)
_send(radio.pipe, ACK)

return memmap.MemoryMap(data)

def _upload(radio):
cur = 0
for block in radio._block_lengths:
for _i in range(0, block, radio._block_size):
length = min(radio._block_size, block)
#print "i=%i length=%i range: %i-%i" % (i, length,
# cur, cur+length)
_send(radio.pipe, radio.get_mmap()[cur:cur+length])
if radio.pipe.read(1) != ACK:
raise errors.RadioError("Radio did not ack block at %i" % cur)
cur += length
time.sleep(0.05)

if radio.status_fn:
status = chirp_common.Status()
status.cur = cur
status.max = radio.get_memsize()
status.msg = "Cloning to radio"
radio.status_fn(status)

def get_freq(rawfreq):
"""Decode a frequency that may include a fractional step flag"""
# Ugh. The 0x80 and 0x40 indicate values to add to get the
# real frequency. Gross.
if rawfreq > 8000000000:
rawfreq = (rawfreq - 8000000000) + 5000

if rawfreq > 4000000000:
rawfreq = (rawfreq - 4000000000) + 2500

return rawfreq

def set_freq(freq, obj, field):
"""Encode a frequency with any necessary fractional step flags"""
obj[field] = freq / 10000
if (freq % 1000) == 500:
obj[field][0].set_bits(0x40)

if (freq % 10000) >= 5000:
obj[field][0].set_bits(0x80)
return freq

class FTx800Radio(yaesu_clone.YaesuCloneModeRadio):
"""Base class for FT-7800,7900,8800,8900 radios"""
BAUD_RATE = 9600
VENDOR = "Yaesu"
MODES = list(MODES)
_block_size = 64

POWER_LEVELS_VHF = [chirp_common.PowerLevel("Hi", watts=50),
chirp_common.PowerLevel("Mid1", watts=20),
chirp_common.PowerLevel("Mid2", watts=10),
chirp_common.PowerLevel("Low", watts=5)]

POWER_LEVELS_UHF = [chirp_common.PowerLevel("Hi", watts=35),
chirp_common.PowerLevel("Mid1", watts=20),
chirp_common.PowerLevel("Mid2", watts=10),
chirp_common.PowerLevel("Low", watts=5)]

@classmethod
def get_prompts(cls):
rp = chirp_common.RadioPrompts()
rp.pre_download = _(dedent("""\
1. Turn radio off.
2. Connect cable to DATA jack.
3. Press and hold in the [MHz(PRI)] key while turning the
radio on.
4. Rotate the DIAL job to select "F-7 CLONE".
5. Press and hold in the [BAND(SET)] key. The display
will disappear for a moment, then the "CLONE" notation
will appear.
6. <b>After clicking OK</b>, press the [V/M(MW)] key to send image."""))
rp.pre_upload = _(dedent("""\
1. Turn radio off.
2. Connect cable to DATA jack.
3. Press and hold in the [MHz(PRI)] key while turning the
radio on.
4. Rotate the DIAL job to select "F-7 CLONE".
5. Press and hold in the [BAND(SET)] key. The display
will disappear for a moment, then the "CLONE" notation
will appear.
6. Press the [LOW(ACC)] key ("--RX--" will appear on the display)."""))
return rp
def get_features(self):
rf = chirp_common.RadioFeatures()
rf.memory_bounds = (1, 999)
rf.has_bank = False
rf.has_ctone = False
rf.has_dtcs_polarity = False
rf.valid_modes = MODES
rf.valid_tmodes = TMODES
rf.valid_duplexes = ["", "-", "+", "split"]
rf.valid_tuning_steps = STEPS
rf.valid_bands = [(108000000, 520000000), (700000000, 990000000)]
rf.valid_skips = ["", "S", "P"]
rf.valid_power_levels = self.POWER_LEVELS_VHF
rf.valid_characters = "".join(CHARSET)
rf.valid_name_length = 6
rf.can_odd_split = True
return rf

def _checksums(self):
return [ yaesu_clone.YaesuChecksum(0x0000, 0x7B47) ]

def sync_in(self):
start = time.time()
try:
self._mmap = _download(self)
except errors.RadioError:
raise
except Exception, e:
raise errors.RadioError("Failed to communicate with radio: %s" % e)
print "Download finished in %i seconds" % (time.time() - start)
self.check_checksums()
self.process_mmap()

def process_mmap(self):
self._memobj = bitwise.parse(MEM_FORMAT, self._mmap)

def sync_out(self):
self.update_checksums()
start = time.time()
try:
_upload(self)
except errors.RadioError:
raise
except Exception, e:
raise errors.RadioError("Failed to communicate with radio: %s" % e)
print "Upload finished in %i seconds" % (time.time() - start)

def get_raw_memory(self, number):
return repr(self._memobj.memory[number-1])

def _get_mem_offset(self, mem, _mem):
if mem.duplex == "split":
return get_freq(int(_mem.split) * 10000)
else:
return (_mem.offset * 5) * 10000

def _set_mem_offset(self, mem, _mem):
if mem.duplex == "split":
set_freq(mem.offset, _mem, "split")
else:
_mem.offset = (int(mem.offset / 10000) / 5)

def _get_mem_name(self, mem, _mem):
_nam = self._memobj.names[mem.number - 1]

name = ""
if _nam.used:
for i in str(_nam.name):
name += CHARSET[ord(i)]

return name.rstrip()

def _set_mem_name(self, mem, _mem):
_nam = self._memobj.names[mem.number - 1]

if mem.name.rstrip():
name = [chr(CHARSET.index(x)) for x in mem.name.ljust(6)[:6]]
_nam.name = "".join(name)
_nam.used = 1
_nam.enabled = 1
else:
_nam.used = 0
_nam.enabled = 0

def _get_mem_skip(self, mem, _mem):
_flg = self._memobj.flags[(mem.number - 1) / 4]
flgidx = (mem.number - 1) % 4
return SKIPS[_flg["skip%i" % flgidx]]

def _set_mem_skip(self, mem, _mem):
_flg = self._memobj.flags[(mem.number - 1) / 4]
flgidx = (mem.number - 1) % 4
_flg["skip%i" % flgidx] = SKIPS.index(mem.skip)

def get_memory(self, number):
_mem = self._memobj.memory[number - 1]

mem = chirp_common.Memory()
mem.number = number
mem.empty = not _mem.used
if mem.empty:
return mem

mem.freq = get_freq(int(_mem.freq) * 10000)
mem.rtone = chirp_common.TONES[_mem.tone]
mem.tmode = TMODES[_mem.tmode]
mem.mode = self.MODES[_mem.mode]
mem.dtcs = chirp_common.DTCS_CODES[_mem.dtcs]
if self.get_features().has_tuning_step:
mem.tuning_step = STEPS[_mem.tune_step]
mem.duplex = DUPLEX[_mem.duplex]
mem.offset = self._get_mem_offset(mem, _mem)
mem.name = self._get_mem_name(mem, _mem)

if int(mem.freq / 100) == 4:
mem.power = self.POWER_LEVELS_UHF[_mem.power]
else:
mem.power = self.POWER_LEVELS_VHF[_mem.power]

mem.skip = self._get_mem_skip(mem, _mem)

return mem

def set_memory(self, mem):
_mem = self._memobj.memory[mem.number - 1]

_mem.used = int(not mem.empty)
if mem.empty:
return

set_freq(mem.freq, _mem, "freq")
_mem.tone = chirp_common.TONES.index(mem.rtone)
_mem.tmode = TMODES.index(mem.tmode)
_mem.mode = self.MODES.index(mem.mode)
_mem.dtcs = chirp_common.DTCS_CODES.index(mem.dtcs)
if self.get_features().has_tuning_step:
_mem.tune_step = STEPS.index(mem.tuning_step)
_mem.duplex = DUPLEX.index(mem.duplex)
_mem.split = mem.duplex == "split" and int (mem.offset / 10000) or 0
if mem.power:
_mem.power = self.POWER_LEVELS_VHF.index(mem.power)
else:
_mem.power = 0
_mem.unknown5 = 0 # Make sure we don't leave garbage here

# NB: Leave offset after mem name for the 8800!
self._set_mem_name(mem, _mem)
self._set_mem_offset(mem, _mem)

self._set_mem_skip(mem, _mem)

class FT7800BankModel(chirp_common.BankModel):
"""Yaesu FT-7800/7900 bank model"""
def __init__(self, radio):
super(FT7800BankModel, self).__init__(radio)
self.__b2m_cache = defaultdict(list)
self.__m2b_cache = defaultdict(list)

def __precache(self):
if self.__b2m_cache:
return

for bank in self.get_mappings():
self.__b2m_cache[bank.index] = self._get_bank_memories(bank)
for memnum in self.__b2m_cache[bank.index]:
self.__m2b_cache[memnum].append(bank.index)

def get_num_mappings(self):
return 20

def get_mappings(self):
banks = []
for i in range(0, self.get_num_mappings()):
bank = chirp_common.Bank(self, "%i" % i, "BANK-%i" % (i + 1))
bank.index = i
banks.append(bank)

return banks

def add_memory_to_mapping(self, memory, bank):
self.__precache()

index = memory.number - 1
_bitmap = self._radio._memobj.bank_channels[bank.index]
ishft = 31 - (index % 32)
_bitmap.bitmap[index / 32] |= (1 << ishft)
self.__m2b_cache[memory.number].append(bank.index)
self.__b2m_cache[bank.index].append(memory.number)

def remove_memory_from_mapping(self, memory, bank):
self.__precache()

index = memory.number - 1
_bitmap = self._radio._memobj.bank_channels[bank.index]
ishft = 31 - (index % 32)
if not (_bitmap.bitmap[index / 32] & (1 << ishft)):
raise Exception("Memory {num} is " +
"not in bank {bank}".format(num=memory.number,
bank=bank))
_bitmap.bitmap[index / 32] &= ~(1 << ishft)
self.__b2m_cache[bank.index].remove(memory.number)
self.__m2b_cache[memory.number].remove(bank.index)

def _get_bank_memories(self, bank):
memories = []
upper = self._radio.get_features().memory_bounds[1]
for i in range(0, upper):
_bitmap = self._radio._memobj.bank_channels[bank.index].bitmap[i/32]
ishft = 31 - (i % 32)
if _bitmap & (1 << ishft):
memories.append(i + 1)
return memories

def get_mapping_memories(self, bank):
self.__precache()

return [self._radio.get_memory(n)
for n in self.__b2m_cache[bank.index]]

def get_memory_mappings(self, memory):
self.__precache()

_banks = self.get_mappings()
return [_banks[b] for b in self.__m2b_cache[memory.number]]

@directory.register
class FT7800Radio(FTx800Radio):
"""Yaesu FT-7800"""
MODEL = "FT-7800/7900"

_model = "AH016"
_memsize = 31561
_block_lengths = [8, 31552, 1]
def get_bank_model(self):
return FT7800BankModel(self)

def get_features(self):
rf = FTx800Radio.get_features(self)
rf.has_bank = True
rf.has_settings = True
return rf

def set_memory(self, memory):
if memory.empty:
self._wipe_memory_banks(memory)
FTx800Radio.set_memory(self, memory)

def _decode_chars(self, inarr):
if CHIRP_DEBUG:
print "@_decode_chars, type: %s" % type(inarr)
print inarr
outstr = ""
for i in inarr:
if i == 0xFF:
break
outstr += CHARSET[i & 0x7F]
return outstr.rstrip()
def _encode_chars(self, instr, length = 16):
if CHIRP_DEBUG:
print "@_encode_chars, type: %s" % type(instr)
print instr
outarr = []
instr = str(instr)
for i in range(length):
if i < len(instr):
outarr.append(CHARSET.index(instr[i]))
else:
outarr.append(0xFF)
return outarr

def get_settings(self):
_settings = self._memobj.settings
basic = RadioSettingGroup("basic", "Basic")
dtmf = RadioSettingGroup("dtmf", "DTMF")
arts = RadioSettingGroup("arts", "ARTS")
prog = RadioSettingGroup("prog", "Programmable Buttons")
top = RadioSettingGroup("top", "All Settings",
basic, dtmf, arts, prog)

basic.append( RadioSetting("priority_revert", "Priority Revert",
RadioSettingValueBoolean(_settings.priority_revert)))

basic.append( RadioSetting("memory_only", "Memory Only mode",
RadioSettingValueBoolean(_settings.memory_only)))
opts = ["off"] + [ "%0.1f" % (t / 60.0) for t in range(30, 750, 30) ]
basic.append( RadioSetting("apo", "APO time (hrs)",
RadioSettingValueList(opts, opts[_settings.apo])))

basic.append( RadioSetting("beep_scan", "Beep: Scan",
RadioSettingValueBoolean(_settings.beep_scan)))

basic.append( RadioSetting("beep_edge", "Beep: Edge",
RadioSettingValueBoolean(_settings.beep_edge)))

basic.append( RadioSetting("beep_key", "Beep: Key",
RadioSettingValueBoolean(_settings.beep_key)))
opts = ["T/RX Normal", "RX Reverse", "TX Reverse", "T/RX Reverse"]
basic.append( RadioSetting("dcs_polarity", "DCS polarity",
RadioSettingValueList(opts, opts[_settings.dcs_polarity])))
opts = ["off", "dim 1", "dim 2", "dim 3"]
basic.append( RadioSetting("dimmer", "Dimmer",
RadioSettingValueList(opts, opts[_settings.dimmer])))

opts = ["manual", "auto", "1-auto"]
basic.append( RadioSetting("hyper_write", "Hyper Write",
RadioSettingValueList(opts, opts[_settings.hyper_write])))
opts = ["", "key", "dial", "key+dial", "ptt",
"ptt+key", "ptt+dial", "all"]
basic.append( RadioSetting("lock", "Lock mode",
RadioSettingValueList(opts, opts[_settings.lock])))

opts = ["MH-42", "MH-48"]
basic.append( RadioSetting("microphone_type", "Microphone Type",
RadioSettingValueList(opts, opts[_settings.microphone_type])))

opts = ["off"] + ["S-%d" % n for n in range(2, 10) ] + ["S-Full"]
basic.append( RadioSetting("rf_sql", "RF Squelch",
RadioSettingValueList(opts, opts[_settings.rf_sql])))

opts = ["time", "hold", "busy"]
basic.append( RadioSetting("scan_resume", "Scan Resume",
RadioSettingValueList(opts, opts[_settings.scan_resume])))

opts = ["single", "continuous"]
basic.append( RadioSetting("smart_search", "Smart Search",
RadioSettingValueList(opts, opts[_settings.smart_search])))

opts = ["off"] + [ "%d" % t for t in range(1, 31) ]
basic.append( RadioSetting("tot", "Time-out timer (mins)",
RadioSettingValueList(opts, opts[_settings.tot])))

# dtmf tab

opts = ["50", "100", "250", "450", "750", "1000"]
dtmf.append( RadioSetting("dtmf_delay", "DTMF delay (ms)",
RadioSettingValueList(opts, opts[_settings.dtmf_delay])))

opts = ["50", "75", "100"]
dtmf.append( RadioSetting("dtmf_speed", "DTMF speed (ms)",
RadioSettingValueList(opts, opts[_settings.dtmf_speed])))

for i in range(16):
name = "dtmf%02d" % i
dtmfsetting = self._memobj.dtmf[i]
dtmfstr = ""
for c in dtmfsetting.memory:
if c == 0xFF:
break
if c < len(DTMFCHARSET):
dtmfstr += DTMFCHARSET[c]
if CHIRP_DEBUG:
print dtmfstr
dtmfentry = RadioSettingValueString(0, 16, dtmfstr)
dtmfentry.set_charset(DTMFCHARSET + list(" "))
rs = RadioSetting(name, name.upper(), dtmfentry)
dtmf.append(rs)

# arts tab

opts = ["off", "in range", "always"]
arts.append( RadioSetting("arts_mode", "ARTS beep",
RadioSettingValueList(opts, opts[_settings.arts_mode])))

opts = ["15", "25"]
arts.append( RadioSetting("arts_interval", "ARTS interval",
RadioSettingValueList(opts, opts[_settings.arts_interval])))

arts.append( RadioSetting("arts_cwid_enable", "CW ID",
RadioSettingValueBoolean(_settings.arts_cwid_enable)))

_arts_cwid = self._memobj.arts_cwid
cwid = RadioSettingValueString(0, 16,
self._decode_chars(_arts_cwid.get_value()))
cwid.set_charset(CHARSET)
arts.append( RadioSetting("arts_cwid", "CW ID", cwid ))

# prog buttons

opts = ["WX", "Reverse", "Repeater", "SQL Off", "Lock", "Dimmer"]
prog.append( RadioSetting("prog_panel_acc", "Prog Panel - Low(ACC)",
RadioSettingValueList(opts, opts[_settings.prog_panel_acc])))

opts = ["Reverse", "Home"]
prog.append( RadioSetting("prog_tone_vm", "TONE | V/M",
RadioSettingValueList(opts, opts[_settings.prog_tone_vm])))

opts = ["" for n in range(26)] + \
["Priority", "Low", "Tone", "MHz", "Reverse", "Home", "Band",
"VFO/MR", "Scan", "Sql Off", "TCall", "SSCH", "ARTS", "Tone Freq",
"DCSC", "WX", "Repeater" ]

prog.append( RadioSetting("prog_p1", "P1",
RadioSettingValueList(opts, opts[_settings.prog_p1])))

prog.append( RadioSetting("prog_p2", "P2",
RadioSettingValueList(opts, opts[_settings.prog_p2])))

prog.append( RadioSetting("prog_p3", "P3",
RadioSettingValueList(opts, opts[_settings.prog_p3])))

prog.append( RadioSetting("prog_p4", "P4",
RadioSettingValueList(opts, opts[_settings.prog_p4])))

return top

def set_settings(self, uisettings):
for element in uisettings:
if not isinstance(element, RadioSetting):
self.set_settings(element)
continue
if not element.changed():
continue
try:
_settings = self._memobj.settings
setting = element.get_name()
if re.match('dtmf\d', setting):
# set dtmf fields
dtmfstr = str(element.value).strip()
newval = []
for i in range(0,16):
if i < len(dtmfstr):
newval.append(DTMFCHARSET.index(dtmfstr[i]))
else:
newval.append(0xFF)
if CHIRP_DEBUG:
print newval
idx = int(setting[-2:])
_settings = self._memobj.dtmf[idx]
_settings.memory = newval
continue
if setting == "arts_cwid":
oldval = self._memobj.arts_cwid
newval = self._encode_chars(newval.get_value(), 6)
self._memobj.arts_cwid = newval
continue
# normal settings
newval = element.value
oldval = getattr(_settings, setting)
if CHIRP_DEBUG:
print "Setting %s(%s) <= %s" % (setting,
oldval, newval)
setattr(_settings, setting, newval)
except Exception, e:
print element.get_name()
raise

MEM_FORMAT_8800 = """
#seekto 0x%X;
struct {
u8 used:1,
unknown1:1,
mode:2,
unknown2:1,
duplex:3;
bbcd freq[3];
u8 unknown3:1,
tune_step:3,
power:2,
tmode:2;
bbcd split[3];
u8 nameused:1,
unknown5:1,
tone:6;
u8 namevalid:1,
dtcs:7;
u8 name[6];
} memory[500];

#seekto 0x51C8;
struct {
u8 skip0:2,
skip1:2,
skip2:2,
skip3:2;
} flags[250];

#seekto 0x%X;
struct {
u32 bitmap[16];
} bank_channels[10];


#seekto 0x7B48;
u8 checksum;
"""

class FT8800BankModel(FT7800BankModel):
def get_num_mappings(self):
return 10

@directory.register
class FT8800Radio(FTx800Radio):
"""Base class for Yaesu FT-8800"""
MODEL = "FT-8800"

_model = "AH018"
_memsize = 22217

_block_lengths = [8, 22208, 1]

_memstart = 0x0000

@classmethod
def get_prompts(cls):
rp = chirp_common.RadioPrompts()
rp.pre_download = _(dedent("""\
1. Turn radio off.
2. Connect cable to DATA jack.
3. Press and hold in the "left" [V/M] key while turning the
radio on.
4. Rotate the "right" DIAL knob to select "CLONE START".
5. Press the [SET] key. The display will disappear
for a moment, then the "CLONE" notation will appear.
6. <b>After clicking OK</b>, press the "left" [V/M] key to
send image."""))
rp.pre_upload = _(dedent("""\
1. Turn radio off.
2. Connect cable to DATA jack.
3. Press and hold in the "left" [V/M] key while turning the
radio on.
4. Rotate the "right" DIAL knob to select "CLONE START".
5. Press the [SET] key. The display will disappear
for a moment, then the "CLONE" notation will appear.
6. Press the "left" [LOW] key ("CLONE -RX-" will appear on
the display)."""))
return rp
def get_features(self):
rf = FTx800Radio.get_features(self)
rf.has_sub_devices = self.VARIANT == ""
rf.has_bank = True
rf.memory_bounds = (1, 500)
return rf

def get_sub_devices(self):
return [FT8800RadioLeft(self._mmap), FT8800RadioRight(self._mmap)]

def get_bank_model(self):
return FT8800BankModel(self)

def _checksums(self):
return [ yaesu_clone.YaesuChecksum(0x0000, 0x56C7) ]

def process_mmap(self):
if not self._memstart:
return

self._memobj = bitwise.parse(MEM_FORMAT_8800 % (self._memstart,
self._bankstart),
self._mmap)

def _get_mem_offset(self, mem, _mem):
if mem.duplex == "split":
return get_freq(int(_mem.split) * 10000)

# The offset is packed into the upper two bits of the last four
# bytes of the name (?!)
val = 0
for i in _mem.name[2:6]:
val <<= 2
val |= ((i & 0xC0) >> 6)

return (val * 5) * 10000

def _set_mem_offset(self, mem, _mem):
if mem.duplex == "split":
set_freq(mem.offset, _mem, "split")
return

val = int(mem.offset / 10000) / 5
for i in reversed(range(2, 6)):
_mem.name[i] = (_mem.name[i] & 0x3F) | ((val & 0x03) << 6)
val >>= 2

def _get_mem_name(self, mem, _mem):
name = ""
if _mem.namevalid:
for i in _mem.name:
index = int(i) & 0x3F
if index < len(CHARSET):
name += CHARSET[index]

return name.rstrip()

def _set_mem_name(self, mem, _mem):
_mem.name = [CHARSET.index(x) for x in mem.name.ljust(6)[:6]]
_mem.namevalid = 1
_mem.nameused = bool(mem.name.rstrip())

class FT8800RadioLeft(FT8800Radio):
"""Yaesu FT-8800 Left VFO subdevice"""
VARIANT = "Left"
_memstart = 0x0948
_bankstart = 0x4BC8


class FT8800RadioRight(FT8800Radio):
"""Yaesu FT-8800 Right VFO subdevice"""
VARIANT = "Right"
_memstart = 0x2948
_bankstart = 0x4BC8

MEM_FORMAT_8900 = """
#seekto 0x0708;
struct {
u8 used:1,
skip:2,
sub_used:1,
unknown2:1,
duplex:3;
bbcd freq[3];
u8 mode:2,
nameused:1,
unknown4:1,
power:2,
tmode:2;
bbcd split[3];
u8 unknown5:2,
tone:6;
u8 namevalid:1,
dtcs:7;
u8 name[6];
} memory[799];

#seekto 0x51C8;
struct {
u8 skip0:2,
skip1:2,
skip2:2,
skip3:2;
} flags[400];

#seekto 0x7B48;
u8 checksum;
"""

@directory.register
class FT8900Radio(FT8800Radio):
"""Yaesu FT-8900"""
MODEL = "FT-8900"

_model = "AH008"
_memsize = 14793
_block_lengths = [8, 14784, 1]

MODES = ["FM", "NFM", "AM"]

def process_mmap(self):
self._memobj = bitwise.parse(MEM_FORMAT_8900, self._mmap)

def get_features(self):
rf = FT8800Radio.get_features(self)
rf.has_sub_devices = False
rf.has_bank = False
rf.valid_modes = self.MODES
rf.valid_bands = [( 28000000, 29700000),
( 50000000, 54000000),
(108000000, 180000000),
(320000000, 480000000),
(700000000, 985000000)]
rf.memory_bounds = (1, 799)
rf.has_tuning_step = False

return rf

def _checksums(self):
return [ yaesu_clone.YaesuChecksum(0x0000, 0x39C7) ]

def _get_mem_skip(self, mem, _mem):
return SKIPS[_mem.skip]

def _set_mem_skip(self, mem, _mem):
_mem.skip = SKIPS.index(mem.skip)

def get_memory(self, number):
mem = FT8800Radio.get_memory(self, number)

_mem = self._memobj.memory[number - 1]

return mem

def set_memory(self, mem):
FT8800Radio.set_memory(self, mem)

# The 8900 has a bit flag that tells the radio whether or not
# the memory should show up on the sub (right) band
_mem = self._memobj.memory[mem.number - 1]
if mem.freq < 108000000 or mem.freq > 480000000:
_mem.sub_used = 0
else:
_mem.sub_used = 1

(3-3/3)