Project

General

Profile

Bug #3539 » btech.py

dev version with support for 3 new variants of the KT-8900 and one of the GT-890 - Pavel Milanes, 05/09/2016 11:33 AM

 
# Copyright 2016:
# * Pavel Milanes CO7WT, <pavelmc@gmail.com>
# * Jim Unroe KC9HI, <rock.unroe@gmail.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

import time
import struct
import logging

LOG = logging.getLogger(__name__)

from chirp import chirp_common, directory, memmap
from chirp import bitwise, errors, util
from chirp.settings import RadioSettingGroup, RadioSetting, \
RadioSettingValueBoolean, RadioSettingValueList, \
RadioSettingValueString, RadioSettingValueInteger, \
RadioSettings, InvalidValueError
from textwrap import dedent

MEM_FORMAT = """
#seekto 0x0000;
struct {
lbcd rxfreq[4];
lbcd txfreq[4];
ul16 rxtone;
ul16 txtone;
u8 unknown0:4,
scode:4;
u8 unknown1:2,
spmute:1,
unknown2:3,
optsig:2;
u8 unknown3:3,
scramble:1,
unknown4:3,
power:1;
u8 unknown5:1,
wide:1,
unknown6:2,
bcl:1,
add:1,
pttid:2;
} memory[200];

#seekto 0x0E00;
struct {
u8 tdr;
u8 unknown1;
u8 sql;
u8 unknown2[2];
u8 tot;
u8 apo; // BTech radios use this as the Auto Power Off time
// other radios use this as pre-Time Out Alert
u8 unknown3;
u8 abr;
u8 beep;
u8 unknown4[4];
u8 dtmfst;
u8 unknown5[2];
u8 prisc;
u8 prich;
u8 screv;
u8 unknown6[2];
u8 pttid;
u8 pttlt;
u8 unknown7;
u8 emctp;
u8 emcch;
u8 ringt;
u8 unknown8;
u8 camdf;
u8 cbmdf;
u8 sync; // BTech radios use this as the display sync setting
// other radios use this as the auto keypad lock setting
u8 ponmsg;
u8 wtled;
u8 rxled;
u8 txled;
u8 unknown9[5];
u8 anil;
u8 reps;
u8 repm;
u8 tdrab;
u8 ste;
u8 rpste;
u8 rptdl;
} settings;

#seekto 0x0E80;
struct {
u8 unknown1;
u8 vfomr;
u8 keylock;
u8 unknown2;
u8 unknown3:4,
vfomren:1,
unknown4:1,
reseten:1,
menuen:1;
u8 unknown5[11];
u8 dispab;
u8 mrcha;
u8 mrchb;
u8 menu;
} settings2;

#seekto 0x0EC0;
struct {
char line1[6];
char line2[6];
} poweron_msg;

struct settings_vfo {
u8 freq[8];
u8 unknown1;
u8 offset[4];
u8 unknown2[3];
ul16 rxtone;
ul16 txtone;
u8 scode;
u8 spmute;
u8 optsig;
u8 scramble;
u8 wide;
u8 power;
u8 shiftd;
u8 step;
u8 unknown3[4];
};

#seekto 0x0F00;
struct {
struct settings_vfo a;
struct settings_vfo b;
} vfo;

#seekto 0x1000;
struct {
char name[6];
u8 unknown1[10];
} names[200];

#seekto 0x3C90;
struct {
u8 vhf_low[3];
u8 vhf_high[3];
u8 uhf_low[3];
u8 uhf_high[3];
} ranges;

// the 2501+220 has a different zone for storing ranges

#seekto 0x3CD0;
struct {
u8 vhf_low[3];
u8 vhf_high[3];
u8 unknown1[4];
u8 unknown2[6];
u8 vhf2_low[3];
u8 vhf2_high[3];
u8 unknown3[4];
u8 unknown4[6];
u8 uhf_low[3];
u8 uhf_high[3];
} ranges220;

#seekto 0x3F70;
struct {
char fp[6];
} fingerprint;

"""

# A note about the memmory in these radios
#
# The real memory of these radios extends to 0x4000
# On read the factory software only uses up to 0x3200
# On write it just uploads the contents up to 0x3100
#
# The mem beyond 0x3200 holds the ID data

MEM_SIZE = 0x4000
BLOCK_SIZE = 0x40
TX_BLOCK_SIZE = 0x10
ACK_CMD = "\x06"
MODES = ["FM", "NFM"]
SKIP_VALUES = ["S", ""]
TONES = chirp_common.TONES
DTCS = sorted(chirp_common.DTCS_CODES + [645])
NAME_LENGTH = 6
PTTID_LIST = ["OFF", "BOT", "EOT", "BOTH"]
PTTIDCODE_LIST = ["%s" % x for x in range(1, 16)]
OPTSIG_LIST = ["OFF", "DTMF", "2TONE", "5TONE"]
SPMUTE_LIST = ["Tone/DTCS", "Tone/DTCS and Optsig", "Tone/DTCS or Optsig"]

LIST_TOT = ["%s sec" % x for x in range(15, 615, 15)]
LIST_TOA = ["Off"] + ["%s seconds" % x for x in range(1, 11)]
LIST_APO = ["Off"] + ["%s minutes" % x for x in range(30, 330, 30)]
LIST_ABR = ["Off"] + ["%s seconds" % x for x in range(1, 51)]
LIST_DTMFST = ["OFF", "Keyboard", "ANI", "Keyboad + ANI"]
LIST_SCREV = ["TO (timeout)", "CO (carrier operated)", "SE (search)"]
LIST_EMCTP = ["TX alarm sound", "TX ANI", "Both"]
LIST_RINGT = ["Off"] + ["%s seconds" % x for x in range(1, 10)]
LIST_MDF = ["Frequency", "Channel", "Name"]
LIST_PONMSG = ["Full", "Message", "Battery voltage"]
LIST_COLOR = ["Off", "Blue", "Orange", "Purple"]
LIST_REPS = ["1000 Hz", "1450 Hz", "1750 Hz", "2100Hz"]
LIST_REPM = ["Off", "Carrier", "CTCSS or DCS", "Tone", "DTMF"]
LIST_RPTDL = ["Off"] + ["%s ms" % x for x in range(1, 10)]
LIST_ANIL = ["3", "4", "5"]
LIST_AB = ["A", "B"]
LIST_VFOMR = ["Frequency", "Channel"]
LIST_SHIFT = ["Off", "+", "-"]
LIST_TXP = ["High", "Low"]
LIST_WIDE = ["Wide", "Narrow"]
STEPS = [2.5, 5.0, 6.25, 10.0, 12.5, 25.0]
LIST_STEP = [str(x) for x in STEPS]

# This is a general serial timeout for all serial read functions.
# Practice has show that about 0.7 sec will be enough to cover all radios.
STIMEOUT = 0.7

# this var controls the verbosity in the debug and by default it's low (False)
# make it True and you will to get a very verbose debug.log
debug = False

# Power Levels
NORMAL_POWER_LEVELS = [chirp_common.PowerLevel("High", watts=25),
chirp_common.PowerLevel("Low", watts=10)]
UV5001_POWER_LEVELS = [chirp_common.PowerLevel("High", watts=50),
chirp_common.PowerLevel("Low", watts=10)]

# this must be defined globaly
POWER_LEVELS = None

# valid chars on the LCD, Note that " " (space) is stored as "\xFF"
VALID_CHARS = chirp_common.CHARSET_ALPHANUMERIC + \
"`{|}!\"#$%&'()*+,-./:;<=>?@[]^_"


##### ID strings #####################################################

# BTECH UV2501 pre-production units
UV2501pp_fp = "M2C294"
# BTECH UV2501 pre-production units 2 + and 1st Gen radios
UV2501pp2_fp = "M29204"
# B-TECH UV-2501 second generation (2G) radios
UV2501G2_fp = "BTG214"


# B-TECH UV-2501+220 pre-production units
UV2501_220pp_fp = "M3C281"
# extra block read for the 2501+220 pre-production units
# the same for all of this radios so far
UV2501_220pp_id = " 280528"
# B-TECH UV-2501+220
UV2501_220_fp = "M3G201"
# new variant, let's call it Generation 2
UV2501_220G2_fp = "BTG211"


# B-TECH UV-5001 pre-production units + 1st Gen radios
UV5001pp_fp = "V19204"
# B-TECH UV-5001 alpha units
UV5001alpha_fp = "V28204"
# B-TECH UV-5001 second generation (2G) radios
UV5001G2_fp = "BTG214"
# B-TECH UV-5001 second generation (2G2)
UV5001G22_fp = "V2G204"


# WACCOM Mini-8900
MINI8900_fp = "M28854"


# QYT KT-UV980 & JetStream JT2705M
KTUV980_fp = "H28854"


# QYT KT8900 & Juentai JT-6188
KT8900_fp = "M29154"
# New generation KT8900
KT8900_fp2 = "M2C234"
# this radio has an extra ID
KT8900_id = " 303688"


# Sainsonic GT890
GT890_fp = "M2G1F4"
# this need a second id
# and is the same of the QYT KT8900


#### MAGICS
# for the Waccom Mini-8900
MSTRING_MINI8900 = "\x55\xA5\xB5\x45\x55\x45\x4d\x02"
# for the B-TECH UV-2501+220 (including pre production ones)
MSTRING_220 = "\x55\x20\x15\x12\x12\x01\x4d\x02"
# for the QYT KT8900
MSTRING_KT8900 = "\x55\x20\x15\x09\x16\x45\x4D\x02"
# magic string for all other models
MSTRING = "\x55\x20\x15\x09\x20\x45\x4d\x02"


def _clean_buffer(radio):
"""Cleaning the read serial buffer, hard timeout to survive an infinite
data stream"""

# touching the serial timeout to optimize the flushing
# restored at the end to the default value
radio.pipe.setTimeout(0.1)
dump = "1"
datacount = 0

try:
while len(dump) > 0:
dump = radio.pipe.read(100)
datacount += len(dump)
# hard limit to survive a infinite serial data stream
# 5 times bigger than a normal rx block (69 bytes)
if datacount > 345:
seriale = "Please check your serial port selection."
raise errors.RadioError(seriale)

# restore the default serial timeout
radio.pipe.setTimeout(STIMEOUT)

except Exception:
raise errors.RadioError("Unknown error cleaning the serial buffer")


def _rawrecv(radio, amount):
"""Raw read from the radio device, less intensive way"""

data = ""

try:
data = radio.pipe.read(amount)

# DEBUG
if debug is True:
LOG.debug("<== (%d) bytes:\n\n%s" %
(len(data), util.hexprint(data)))

# fail if no data is received
if len(data) == 0:
raise errors.RadioError("No data received from radio")

# notice on the logs if short
if len(data) < amount:
LOG.warn("Short reading %d bytes from the %d requested." %
(len(data), amount))

except:
raise errors.RadioError("Error reading data from radio")

return data


def _send(radio, data):
"""Send data to the radio device"""

try:
for byte in data:
radio.pipe.write(byte)

# DEBUG
if debug is True:
LOG.debug("==> (%d) bytes:\n\n%s" %
(len(data), util.hexprint(data)))
except:
raise errors.RadioError("Error sending data to radio")


def _make_frame(cmd, addr, length, data=""):
"""Pack the info in the headder format"""
frame = "\x06" + struct.pack(">BHB", ord(cmd), addr, length)
# add the data if set
if len(data) != 0:
frame += data

return frame


def _recv(radio, addr):
"""Get data from the radio all at once to lower syscalls load"""

# Get the full 69 bytes at a time to reduce load
# 1 byte ACK + 4 bytes header + 64 bytes of data (BLOCK_SIZE)

# get the whole block
block = _rawrecv(radio, BLOCK_SIZE + 5)

# basic check
if len(block) < (BLOCK_SIZE + 5):
raise errors.RadioError("Short read of the block 0x%04x" % addr)

# checking for the ack
if block[0] != ACK_CMD:
raise errors.RadioError("Bad ack from radio in block 0x%04x" % addr)

# header validation
c, a, l = struct.unpack(">BHB", block[1:5])
if a != addr or l != BLOCK_SIZE or c != ord("X"):
LOG.debug("Invalid header for block 0x%04x" % addr)
LOG.debug("CMD: %s ADDR: %04x SIZE: %02x" % (c, a, l))
raise errors.RadioError("Invalid header for block 0x%04x:" % addr)

# return the data
return block[5:]


def _start_clone_mode(radio, status):
"""Put the radio in clone mode and get the ident string, 3 tries"""

# cleaning the serial buffer
_clean_buffer(radio)

# prep the data to show in the UI
status.cur = 0
status.msg = "Identifying the radio..."
status.max = 3
radio.status_fn(status)

try:
for a in range(0, status.max):
# Update the UI
status.cur = a + 1
radio.status_fn(status)

# send the magic word
_send(radio, radio._magic)

# Now you get a x06 of ACK if all goes well
ack = radio.pipe.read(1)

if ack == "\x06":
# DEBUG
LOG.info("Magic ACK received")
status.cur = status.max
radio.status_fn(status)

return True

return False

except errors.RadioError:
raise
except Exception, e:
raise errors.RadioError("Error sending Magic to radio:\n%s" % e)


def _do_ident(radio, status, upload=False):
"""Put the radio in PROGRAM mode & identify it"""
# set the serial discipline
radio.pipe.setBaudrate(9600)
radio.pipe.setParity("N")

# open the radio into program mode
if _start_clone_mode(radio, status) is False:
if radio.MODEL == "KT8900":
error = "Radio didn't entered in clone mode; there is a generation"
error += " of this radios that are a clone of the WACCOM Mini-8900"
error += " please try that also."
raise errors.RadioError(error)
else:
raise errors.RadioError("Radio didn't entered in the clone mode")

# Ok, get the ident string
ident = _rawrecv(radio, 49)

# basic check for the ident
if len(ident) != 49:
raise errors.RadioError("Radio send a short ident block.")

# check if ident is OK
itis = False
for fp in radio._fileid:
if fp in ident:
itis = True
break

if itis is False:
LOG.debug("Incorrect model ID, got this:\n\n" + util.hexprint(ident))
raise errors.RadioError("Radio identification failed.")

# some radios needs a extra read and check for a code on it, this ones
# has the check value in the _id2 var, others simply False
if radio._id2 is not False:
# lower the timeout here as this radios are reseting due to timeout
radio.pipe.setTimeout(0.05)

# query & receive the extra ID
_send(radio, _make_frame("S", 0x3DF0, 16))
id2 = _rawrecv(radio, 21)

# WARNING !!!!!!
# different radios send a response with a different amount of data
# it seems that it's padded with \xff, \x20 and some times with \x00
# we just care about the first 16, our magic string is in there
if len(id2) < 16:
raise errors.RadioError("The extra ID is short, aborting.")

# ok, the correct string must be in the received data
if radio._id2 not in id2:
LOG.debug("Full *BAD* extra ID on the %s is: \n%s" %
(radio.MODEL, util.hexprint(id2)))
raise errors.RadioError("The extra ID is wrong, aborting.")

# this radios need a extra request/answer here on the upload
# the amount of data received depends of the radio type
#
# also the first block of TX must no have the ACK at the beginning
# see _upload for this.
if upload is True:
# send an ACK
_send(radio, ACK_CMD)

# the amount of data depend on the radio, so far we have two radios
# reading two bytes with an ACK at the end and just ONE with just
# one byte (QYT KT8900)
# the JT-6188 appears a clone of the last, but reads TWO bytes.
#
# we will read two bytes with a custom timeout to not penalize the
# users for this.
#
# we just check for a response and last byte being a ACK, that is
# the common stone for all radios (3 so far)
ack = _rawrecv(radio, 2)

# checking
if len(ack) == 0 or ack[-1:] != ACK_CMD:
raise errors.RadioError("Radio didn't ACK the upload")

# restore the default serial timeout
radio.pipe.setTimeout(STIMEOUT)

# DEBUG
LOG.info("Positive ident, this is a %s %s" % (radio.VENDOR, radio.MODEL))

return True


def _download(radio):
"""Get the memory map"""

# UI progress
status = chirp_common.Status()

# put radio in program mode and identify it
_do_ident(radio, status)

# the models that doesn't have the extra ID have to make a dummy read here
if radio._id2 is False:
_send(radio, _make_frame("S", 0, BLOCK_SIZE))
discard = _rawrecv(radio, BLOCK_SIZE + 5)

if debug is True:
LOG.info("Dummy first block read done, got this:\n\n %s",
util.hexprint(discard))

# reset the progress bar in the UI
status.max = MEM_SIZE / BLOCK_SIZE
status.msg = "Cloning from radio..."
status.cur = 0
radio.status_fn(status)

# cleaning the serial buffer
_clean_buffer(radio)

data = ""
for addr in range(0, MEM_SIZE, BLOCK_SIZE):
# sending the read request
_send(radio, _make_frame("S", addr, BLOCK_SIZE))

# read
d = _recv(radio, addr)

# aggregate the data
data += d

# UI Update
status.cur = addr / BLOCK_SIZE
status.msg = "Cloning from radio..."
radio.status_fn(status)

return data


def _upload(radio):
"""Upload procedure"""

# The UPLOAD mem is restricted to lower than 0x3100,
# so we will overide that here localy
MEM_SIZE = 0x3100

# UI progress
status = chirp_common.Status()

# put radio in program mode and identify it
_do_ident(radio, status, True)

# get the data to upload to radio
data = radio.get_mmap()

# Reset the UI progress
status.max = MEM_SIZE / TX_BLOCK_SIZE
status.cur = 0
status.msg = "Cloning to radio..."
radio.status_fn(status)

# the radios that doesn't have the extra ID 'may' do a dummy write, I found
# that leveraging the bad ACK and NOT doing the dummy write is ok, as the
# dummy write is accepted (it actually writes to the mem!) by the radio.

# cleaning the serial buffer
_clean_buffer(radio)

# the fun start here
for addr in range(0, MEM_SIZE, TX_BLOCK_SIZE):
# getting the block of data to send
d = data[addr:addr + TX_BLOCK_SIZE]

# build the frame to send
frame = _make_frame("X", addr, TX_BLOCK_SIZE, d)

# first block must not send the ACK at the beginning for the
# ones that has the extra id, since this have to do a extra step
if addr == 0 and radio._id2 is not False:
frame = frame[1:]

# send the frame
_send(radio, frame)

# receiving the response
ack = _rawrecv(radio, 1)

# basic check
if len(ack) != 1:
raise errors.RadioError("No ACK when writing block 0x%04x" % addr)

if not ack in "\x06\x05":
raise errors.RadioError("Bad ACK writing block 0x%04x:" % addr)

# UI Update
status.cur = addr / TX_BLOCK_SIZE
status.msg = "Cloning to radio..."
radio.status_fn(status)


def model_match(cls, data):
"""Match the opened/downloaded image to the correct version"""
rid = data[0x3f70:0x3f76]

if rid in cls._fileid:
return True

return False


def _decode_ranges(low, high):
"""Unpack the data in the ranges zones in the memmap and return
a tuple with the integer corresponding to the Mhz it means"""
ilow = int(low[0]) * 100 + int(low[1]) * 10 + int(low[2])
ihigh = int(high[0]) * 100 + int(high[1]) * 10 + int(high[2])
ilow *= 1000000
ihigh *= 1000000

return (ilow, ihigh)


def _split(rf, f1, f2):
"""Returns False if the two freqs are in the same band (no split)
or True otherwise"""

# determine if the two freqs are in the same band
for low, high in rf.valid_bands:
if f1 >= low and f1 <= high and \
f2 >= low and f2 <= high:
# if the two freqs are on the same Band this is not a split
return False

# if you get here is because the freq pairs are split
return False


class BTech(chirp_common.CloneModeRadio, chirp_common.ExperimentalRadio):
"""BTECH's UV-5001 and alike radios"""
VENDOR = "BTECH"
MODEL = ""
IDENT = ""
_vhf_range = (130000000, 180000000)
_220_range = (210000000, 231000000)
_uhf_range = (400000000, 521000000)
_upper = 199
_magic = MSTRING
_fileid = None
_id2 = False

@classmethod
def get_prompts(cls):
rp = chirp_common.RadioPrompts()
rp.experimental = \
('This driver is experimental.\n'
'\n'
'Please keep a copy of your memories with the original software '
'if you treasure them, this driver is new and may contain'
' bugs.\n'
'\n'
)
rp.pre_download = _(dedent("""\
Follow these instructions to download your info:

1 - Turn off your radio
2 - Connect your interface cable
3 - Turn on your radio
4 - Do the download of your radio data

"""))
rp.pre_upload = _(dedent("""\
Follow these instructions to upload your info:

1 - Turn off your radio
2 - Connect your interface cable
3 - Turn on your radio
4 - Do the upload of your radio data

"""))
return rp

def get_features(self):
"""Get the radio's features"""

# we will use the following var as global
global POWER_LEVELS

rf = chirp_common.RadioFeatures()
rf.has_settings = True
rf.has_bank = False
rf.has_tuning_step = False
rf.can_odd_split = True
rf.has_name = True
rf.has_offset = True
rf.has_mode = True
rf.has_dtcs = True
rf.has_rx_dtcs = True
rf.has_dtcs_polarity = True
rf.has_ctone = True
rf.has_cross = True
rf.valid_modes = MODES
rf.valid_characters = VALID_CHARS
rf.valid_name_length = NAME_LENGTH
rf.valid_duplexes = ["", "-", "+", "split", "off"]
rf.valid_tmodes = ['', 'Tone', 'TSQL', 'DTCS', 'Cross']
rf.valid_cross_modes = [
"Tone->Tone",
"DTCS->",
"->DTCS",
"Tone->DTCS",
"DTCS->Tone",
"->Tone",
"DTCS->DTCS"]
rf.valid_skips = SKIP_VALUES
rf.valid_dtcs_codes = DTCS
rf.memory_bounds = (0, self._upper)

# power levels
if self.MODEL == "UV-5001":
POWER_LEVELS = UV5001_POWER_LEVELS # Higher power (50W)
else:
POWER_LEVELS = NORMAL_POWER_LEVELS # Lower power (25W)

rf.valid_power_levels = POWER_LEVELS

# bands
rf.valid_bands = [self._vhf_range, self._uhf_range]

# 2501+220
if self.MODEL == "UV-2501+220":
rf.valid_bands.append(self._220_range)

return rf

def sync_in(self):
"""Download from radio"""
data = _download(self)
self._mmap = memmap.MemoryMap(data)
self.process_mmap()

def sync_out(self):
"""Upload to radio"""
try:
_upload(self)
except errors.RadioError:
raise
except Exception, e:
raise errors.RadioError("Error: %s" % e)

def set_options(self):
"""This is to read the options from the image and set it in the
environment, for now just the limits of the freqs in the VHF/UHF
ranges"""

# setting the correct ranges for each radio type
if "+220" in self.MODEL:
# the model 2501+220 has a segment in 220
# and a different position in the memmap
ranges = self._memobj.ranges220
else:
ranges = self._memobj.ranges

# the normal dual bands
vhf = _decode_ranges(ranges.vhf_low, ranges.vhf_high)
uhf = _decode_ranges(ranges.uhf_low, ranges.uhf_high)

# DEBUG
LOG.info("Radio ranges: VHF %d to %d" % vhf)
LOG.info("Radio ranges: UHF %d to %d" % uhf)

# 220Mhz case
if "+220" in self.MODEL:
vhf2 = _decode_ranges(ranges.vhf2_low, ranges.vhf2_high)
LOG.info("Radio ranges: VHF(220) %d to %d" % vhf2)
self._220_range = vhf2

# set the class with the real data
self._vhf_range = vhf
self._uhf_range = uhf

def process_mmap(self):
"""Process the mem map into the mem object"""

# Get it
self._memobj = bitwise.parse(MEM_FORMAT, self._mmap)

# load specific parameters from the radio image
self.set_options()

def get_raw_memory(self, number):
return repr(self._memobj.memory[number])

def _decode_tone(self, val):
"""Parse the tone data to decode from mem, it returns:
Mode (''|DTCS|Tone), Value (None|###), Polarity (None,N,R)"""
pol = None

if val in [0, 65535]:
return '', None, None
elif val > 0x0258:
a = val / 10.0
return 'Tone', a, pol
else:
if val > 0x69:
index = val - 0x6A
pol = "R"
else:
index = val - 1
pol = "N"

tone = DTCS[index]
return 'DTCS', tone, pol

def _encode_tone(self, memval, mode, val, pol):
"""Parse the tone data to encode from UI to mem"""
if mode == '' or mode is None:
memval.set_raw("\x00\x00")
elif mode == 'Tone':
memval.set_value(val * 10)
elif mode == 'DTCS':
# detect the index in the DTCS list
try:
index = DTCS.index(val)
if pol == "N":
index += 1
else:
index += 0x6A
memval.set_value(index)
except:
msg = "Digital Tone '%d' is not supported" % value
LOG.error(msg)
raise errors.RadioError(msg)
else:
msg = "Internal error: invalid mode '%s'" % mode
LOG.error(msg)
raise errors.InvalidDataError(msg)

def get_memory(self, number):
"""Get the mem representation from the radio image"""
_mem = self._memobj.memory[number]
_names = self._memobj.names[number]

# Create a high-level memory object to return to the UI
mem = chirp_common.Memory()

# Memory number
mem.number = number

if _mem.get_raw()[0] == "\xFF":
mem.empty = True
return mem

# Freq and offset
mem.freq = int(_mem.rxfreq) * 10
# tx freq can be blank
if _mem.get_raw()[4] == "\xFF":
# TX freq not set
mem.offset = 0
mem.duplex = "off"
else:
# TX freq set
offset = (int(_mem.txfreq) * 10) - mem.freq
if offset != 0:
if _split(self.get_features(), mem.freq, int(_mem.txfreq) * 10):
mem.duplex = "split"
mem.offset = int(_mem.txfreq) * 10
elif offset < 0:
mem.offset = abs(offset)
mem.duplex = "-"
elif offset > 0:
mem.offset = offset
mem.duplex = "+"
else:
mem.offset = 0

# name TAG of the channel
mem.name = str(_names.name).rstrip("\xFF").replace("\xFF", " ")

# power
mem.power = POWER_LEVELS[int(_mem.power)]

# wide/narrow
mem.mode = MODES[int(_mem.wide)]

# skip
mem.skip = SKIP_VALUES[_mem.add]

# tone data
rxtone = txtone = None
txtone = self._decode_tone(_mem.txtone)
rxtone = self._decode_tone(_mem.rxtone)
chirp_common.split_tone_decode(mem, txtone, rxtone)

# Extra
mem.extra = RadioSettingGroup("extra", "Extra")

scramble = RadioSetting("scramble", "Scramble",
RadioSettingValueBoolean(bool(_mem.scramble)))
mem.extra.append(scramble)

bcl = RadioSetting("bcl", "Busy channel lockout",
RadioSettingValueBoolean(bool(_mem.bcl)))
mem.extra.append(bcl)

pttid = RadioSetting("pttid", "PTT ID",
RadioSettingValueList(PTTID_LIST,
PTTID_LIST[_mem.pttid]))
mem.extra.append(pttid)

# validating scode
scode = _mem.scode if _mem.scode != 15 else 0
pttidcode = RadioSetting("scode", "PTT ID signal code",
RadioSettingValueList(
PTTIDCODE_LIST,
PTTIDCODE_LIST[scode]))
mem.extra.append(pttidcode)

optsig = RadioSetting("optsig", "Optional signaling",
RadioSettingValueList(
OPTSIG_LIST,
OPTSIG_LIST[_mem.optsig]))
mem.extra.append(optsig)

spmute = RadioSetting("spmute", "Speaker mute",
RadioSettingValueList(
SPMUTE_LIST,
SPMUTE_LIST[_mem.spmute]))
mem.extra.append(spmute)

return mem

def set_memory(self, mem):
"""Set the memory data in the eeprom img from the UI"""
# get the eprom representation of this channel
_mem = self._memobj.memory[mem.number]
_names = self._memobj.names[mem.number]

# if empty memmory
if mem.empty:
# the channel itself
_mem.set_raw("\xFF" * 16)
# the name tag
_names.set_raw("\xFF" * 16)
return

# frequency
_mem.rxfreq = mem.freq / 10

# duplex
if mem.duplex == "+":
_mem.txfreq = (mem.freq + mem.offset) / 10
elif mem.duplex == "-":
_mem.txfreq = (mem.freq - mem.offset) / 10
elif mem.duplex == "off":
for i in _mem.txfreq:
i.set_raw("\xFF")
elif mem.duplex == "split":
_mem.txfreq = mem.offset / 10
else:
_mem.txfreq = mem.freq / 10

# tone data
((txmode, txtone, txpol), (rxmode, rxtone, rxpol)) = \
chirp_common.split_tone_encode(mem)
self._encode_tone(_mem.txtone, txmode, txtone, txpol)
self._encode_tone(_mem.rxtone, rxmode, rxtone, rxpol)

# name TAG of the channel
if len(mem.name) < NAME_LENGTH:
# we must pad to NAME_LENGTH chars, " " = "\xFF"
mem.name = str(mem.name).ljust(NAME_LENGTH, " ")
_names.name = str(mem.name).replace(" ", "\xFF")

# power, # default power level is high
_mem.power = 0 if mem.power is None else POWER_LEVELS.index(mem.power)

# wide/narrow
_mem.wide = MODES.index(mem.mode)

# scan add property
_mem.add = SKIP_VALUES.index(mem.skip)

# reseting unknowns, this have to be set by hand
_mem.unknown0 = 0
_mem.unknown1 = 0
_mem.unknown2 = 0
_mem.unknown3 = 0
_mem.unknown4 = 0
_mem.unknown5 = 0
_mem.unknown6 = 0

# extra settings
if len(mem.extra) > 0:
# there are setting, parse
for setting in mem.extra:
setattr(_mem, setting.get_name(), setting.value)
else:
# there is no extra settings, load defaults
_mem.spmute = 0
_mem.optsig = 0
_mem.scramble = 0
_mem.bcl = 0
_mem.pttid = 0
_mem.scode = 0

return mem

def get_settings(self):
"""Translate the bit in the mem_struct into settings in the UI"""
_mem = self._memobj
basic = RadioSettingGroup("basic", "Basic Settings")
advanced = RadioSettingGroup("advanced", "Advanced Settings")
other = RadioSettingGroup("other", "Other Settings")
work = RadioSettingGroup("work", "Work Mode Settings")
top = RadioSettings(basic, advanced, other, work)

# Basic
tdr = RadioSetting("settings.tdr", "Transceiver dual receive",
RadioSettingValueBoolean(_mem.settings.tdr))
basic.append(tdr)

sql = RadioSetting("settings.sql", "Squelch level",
RadioSettingValueInteger(0, 9, _mem.settings.sql))
basic.append(sql)

tot = RadioSetting("settings.tot", "Time out timer",
RadioSettingValueList(LIST_TOT, LIST_TOT[
_mem.settings.tot]))
basic.append(tot)

if self.MODEL in ("UV-2501", "UV-2501+220", "UV-5001"):
apo = RadioSetting("settings.apo", "Auto power off timer",
RadioSettingValueList(LIST_APO, LIST_APO[
_mem.settings.apo]))
basic.append(apo)
else:
toa = RadioSetting("settings.apo", "Time out alert timer",
RadioSettingValueList(LIST_TOA, LIST_TOA[
_mem.settings.apo]))
basic.append(toa)

abr = RadioSetting("settings.abr", "Backlight timer",
RadioSettingValueList(LIST_ABR, LIST_ABR[
_mem.settings.abr]))
basic.append(abr)

beep = RadioSetting("settings.beep", "Key beep",
RadioSettingValueBoolean(_mem.settings.beep))
basic.append(beep)

dtmfst = RadioSetting("settings.dtmfst", "DTMF side tone",
RadioSettingValueList(LIST_DTMFST, LIST_DTMFST[
_mem.settings.dtmfst]))
basic.append(dtmfst)

prisc = RadioSetting("settings.prisc", "Priority scan",
RadioSettingValueBoolean(_mem.settings.prisc))
basic.append(prisc)

prich = RadioSetting("settings.prich", "Priority channel",
RadioSettingValueInteger(0, 199,
_mem.settings.prich))
basic.append(prich)

screv = RadioSetting("settings.screv", "Scan resume method",
RadioSettingValueList(LIST_SCREV, LIST_SCREV[
_mem.settings.screv]))
basic.append(screv)

pttlt = RadioSetting("settings.pttlt", "PTT transmit delay",
RadioSettingValueInteger(0, 30,
_mem.settings.pttlt))
basic.append(pttlt)

emctp = RadioSetting("settings.emctp", "Alarm mode",
RadioSettingValueList(LIST_EMCTP, LIST_EMCTP[
_mem.settings.emctp]))
basic.append(emctp)

emcch = RadioSetting("settings.emcch", "Alarm channel",
RadioSettingValueInteger(0, 199,
_mem.settings.emcch))
basic.append(emcch)

ringt = RadioSetting("settings.ringt", "Ring time",
RadioSettingValueList(LIST_RINGT, LIST_RINGT[
_mem.settings.ringt]))
basic.append(ringt)

camdf = RadioSetting("settings.camdf", "Display mode A",
RadioSettingValueList(LIST_MDF, LIST_MDF[
_mem.settings.camdf]))
basic.append(camdf)

cbmdf = RadioSetting("settings.cbmdf", "Display mode B",
RadioSettingValueList(LIST_MDF, LIST_MDF[
_mem.settings.cbmdf]))
basic.append(cbmdf)

if self.MODEL in ("UV-2501", "UV-2501+220", "UV-5001"):
sync = RadioSetting("settings.sync", "A/B channel sync",
RadioSettingValueBoolean(_mem.settings.sync))
basic.append(sync)
else:
autolk = RadioSetting("settings.sync", "Auto keylock",
RadioSettingValueBoolean(_mem.settings.sync))
basic.append(autolk)

ponmsg = RadioSetting("settings.ponmsg", "Power-on message",
RadioSettingValueList(LIST_PONMSG, LIST_PONMSG[
_mem.settings.ponmsg]))
basic.append(ponmsg)

wtled = RadioSetting("settings.wtled", "Standby backlight Color",
RadioSettingValueList(LIST_COLOR, LIST_COLOR[
_mem.settings.wtled]))
basic.append(wtled)

rxled = RadioSetting("settings.rxled", "RX backlight Color",
RadioSettingValueList(LIST_COLOR, LIST_COLOR[
_mem.settings.rxled]))
basic.append(rxled)

txled = RadioSetting("settings.txled", "TX backlight Color",
RadioSettingValueList(LIST_COLOR, LIST_COLOR[
_mem.settings.txled]))
basic.append(txled)

anil = RadioSetting("settings.anil", "ANI length",
RadioSettingValueList(LIST_ANIL, LIST_ANIL[
_mem.settings.anil]))
basic.append(anil)

reps = RadioSetting("settings.reps", "Relay signal (tone burst)",
RadioSettingValueList(LIST_REPS, LIST_REPS[
_mem.settings.reps]))
basic.append(reps)

repm = RadioSetting("settings.repm", "Relay condition",
RadioSettingValueList(LIST_REPM, LIST_REPM[
_mem.settings.repm]))
basic.append(repm)

if self.MODEL in ("UV-2501", "UV-2501+220", "UV-5001"):
tdrab = RadioSetting("settings.tdrab", "TDR return time",
RadioSettingValueList(LIST_ABR, LIST_ABR[
_mem.settings.tdrab]))
basic.append(tdrab)

ste = RadioSetting("settings.ste", "Squelch tail eliminate",
RadioSettingValueBoolean(_mem.settings.ste))
basic.append(ste)

rpste = RadioSetting("settings.rpste", "Repeater STE",
RadioSettingValueList(LIST_RINGT, LIST_RINGT[
_mem.settings.rpste]))
basic.append(rpste)

rptdl = RadioSetting("settings.rptdl", "Repeater STE delay",
RadioSettingValueList(LIST_RPTDL, LIST_RPTDL[
_mem.settings.rptdl]))
basic.append(rptdl)

# Advanced
def _filter(name):
filtered = ""
for char in str(name):
if char in VALID_CHARS:
filtered += char
else:
filtered += " "
return filtered

_msg = self._memobj.poweron_msg
line1 = RadioSetting("poweron_msg.line1", "Power-on message line 1",
RadioSettingValueString(0, 6, _filter(
_msg.line1)))
advanced.append(line1)
line2 = RadioSetting("poweron_msg.line2", "Power-on message line 2",
RadioSettingValueString(0, 6, _filter(
_msg.line2)))
advanced.append(line2)

if self.MODEL in ("UV-2501", "UV-5001"):
vfomren = RadioSetting("settings2.vfomren", "VFO/MR switching",
RadioSettingValueBoolean(
not _mem.settings2.vfomren))
advanced.append(vfomren)

reseten = RadioSetting("settings2.reseten", "RESET",
RadioSettingValueBoolean(
_mem.settings2.reseten))
advanced.append(reseten)

menuen = RadioSetting("settings2.menuen", "Menu",
RadioSettingValueBoolean(
_mem.settings2.menuen))
advanced.append(menuen)

# Other
def convert_bytes_to_limit(bytes):
limit = ""
for byte in bytes:
if byte < 10:
limit += chr(byte + 0x30)
else:
break
return limit

if "+220" in self.MODEL:
_ranges = self._memobj.ranges220
ranges = "ranges220"
else:
_ranges = self._memobj.ranges
ranges = "ranges"

_limit = convert_bytes_to_limit(_ranges.vhf_low)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
vhf_low = RadioSetting("%s.vhf_low" % ranges, "VHF low", val)
other.append(vhf_low)

_limit = convert_bytes_to_limit(_ranges.vhf_high)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
vhf_high = RadioSetting("%s.vhf_high" % ranges, "VHF high", val)
other.append(vhf_high)

if "+220" in self.MODEL:
_limit = convert_bytes_to_limit(_ranges.vhf2_low)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
vhf2_low = RadioSetting("%s.vhf2_low" % ranges, "VHF2 low", val)
other.append(vhf2_low)

_limit = convert_bytes_to_limit(_ranges.vhf2_high)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
vhf2_high = RadioSetting("%s.vhf2_high" % ranges, "VHF2 high", val)
other.append(vhf2_high)

_limit = convert_bytes_to_limit(_ranges.uhf_low)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
uhf_low = RadioSetting("%s.uhf_low" % ranges, "UHF low", val)
other.append(uhf_low)

_limit = convert_bytes_to_limit(_ranges.uhf_high)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
uhf_high = RadioSetting("%s.uhf_high" % ranges, "UHF high", val)
other.append(uhf_high)

val = RadioSettingValueString(0, 6, _filter(_mem.fingerprint.fp))
val.set_mutable(False)
fp = RadioSetting("fingerprint.fp", "Fingerprint", val)
other.append(fp)

# Work
dispab = RadioSetting("settings2.dispab", "Display",
RadioSettingValueList(LIST_AB,LIST_AB[
_mem.settings2.dispab]))
work.append(dispab)

vfomr = RadioSetting("settings2.vfomr", "VFO/MR mode",
RadioSettingValueList(LIST_VFOMR,LIST_VFOMR[
_mem.settings2.vfomr]))
work.append(vfomr)

keylock = RadioSetting("settings2.keylock", "Keypad lock",
RadioSettingValueBoolean(_mem.settings2.keylock))
work.append(keylock)

mrcha = RadioSetting("settings2.mrcha", "MR A channel",
RadioSettingValueInteger(0, 199,
_mem.settings2.mrcha))
work.append(mrcha)

mrchb = RadioSetting("settings2.mrchb", "MR B channel",
RadioSettingValueInteger(0, 199,
_mem.settings2.mrchb))
work.append(mrchb)

def convert_bytes_to_freq(bytes):
real_freq = 0
for byte in bytes:
real_freq = (real_freq * 10) + byte
return chirp_common.format_freq(real_freq * 10)

def my_validate(value):
value = chirp_common.parse_freq(value)
if 180000000 <= value and value < 210000000:
msg = ("Can't be between 180.00000-210.00000")
raise InvalidValueError(msg)
elif 231000000 <= value and value < 400000000:
msg = ("Can't be between 231.00000-400.00000")
raise InvalidValueError(msg)
elif 210000000 <= value and value < 231000000 \
and "+220" not in self.MODEL:
msg = ("Can't be between 180.00000-400.00000")
raise InvalidValueError(msg)
return chirp_common.format_freq(value)

def apply_freq(setting, obj):
value = chirp_common.parse_freq(str(setting.value)) / 10
for i in range(7, -1, -1):
obj.freq[i] = value % 10
value /= 10

val1a = RadioSettingValueString(0, 10, convert_bytes_to_freq(
_mem.vfo.a.freq))
val1a.set_validate_callback(my_validate)
vfoafreq = RadioSetting("vfo.a.freq", "VFO A frequency", val1a)
vfoafreq.set_apply_callback(apply_freq, _mem.vfo.a)
work.append(vfoafreq)

val1b = RadioSettingValueString(0, 10, convert_bytes_to_freq(
_mem.vfo.b.freq))
val1b.set_validate_callback(my_validate)
vfobfreq = RadioSetting("vfo.b.freq", "VFO B frequency", val1b)
vfobfreq.set_apply_callback(apply_freq, _mem.vfo.b)
work.append(vfobfreq)

vfoashiftd = RadioSetting("vfo.a.shiftd", "VFO A shift",
RadioSettingValueList(LIST_SHIFT, LIST_SHIFT[
_mem.vfo.a.shiftd]))
work.append(vfoashiftd)

vfobshiftd = RadioSetting("vfo.b.shiftd", "VFO B shift",
RadioSettingValueList(LIST_SHIFT, LIST_SHIFT[
_mem.vfo.b.shiftd]))
work.append(vfobshiftd)

def convert_bytes_to_offset(bytes):
real_offset = 0
for byte in bytes:
real_offset = (real_offset * 10) + byte
return chirp_common.format_freq(real_offset * 10000)

def apply_offset(setting, obj):
value = chirp_common.parse_freq(str(setting.value)) / 10000
for i in range(3, -1, -1):
obj.offset[i] = value % 10
value /= 10

val1a = RadioSettingValueString(0, 10, convert_bytes_to_offset(
_mem.vfo.a.offset))
vfoaoffset = RadioSetting("vfo.a.offset",
"VFO A offset (0.00-99.95)", val1a)
vfoaoffset.set_apply_callback(apply_offset, _mem.vfo.a)
work.append(vfoaoffset)

val1b = RadioSettingValueString(0, 10, convert_bytes_to_offset(
_mem.vfo.b.offset))
vfoboffset = RadioSetting("vfo.b.offset",
"VFO B offset (0.00-99.95)", val1b)
vfoboffset.set_apply_callback(apply_offset, _mem.vfo.b)
work.append(vfoboffset)

vfoatxp = RadioSetting("vfo.a.power", "VFO A power",
RadioSettingValueList(LIST_TXP,LIST_TXP[
_mem.vfo.a.power]))
work.append(vfoatxp)

vfobtxp = RadioSetting("vfo.b.power", "VFO B power",
RadioSettingValueList(LIST_TXP,LIST_TXP[
_mem.vfo.b.power]))
work.append(vfobtxp)

vfoawide = RadioSetting("vfo.a.wide", "VFO A bandwidth",
RadioSettingValueList(LIST_WIDE,LIST_WIDE[
_mem.vfo.a.wide]))
work.append(vfoawide)

vfobwide = RadioSetting("vfo.b.wide", "VFO B bandwidth",
RadioSettingValueList(LIST_WIDE,LIST_WIDE[
_mem.vfo.b.wide]))
work.append(vfobwide)

vfoastep = RadioSetting("vfo.a.step", "VFO A step",
RadioSettingValueList(LIST_STEP,LIST_STEP[
_mem.vfo.a.step]))
work.append(vfoastep)

vfobstep = RadioSetting("vfo.b.step", "VFO B step",
RadioSettingValueList(LIST_STEP,LIST_STEP[
_mem.vfo.b.step]))
work.append(vfobstep)

vfoaoptsig = RadioSetting("vfo.a.optsig", "VFO A optional signal",
RadioSettingValueList(OPTSIG_LIST,
OPTSIG_LIST[_mem.vfo.a.optsig]))
work.append(vfoaoptsig)

vfoboptsig = RadioSetting("vfo.b.optsig", "VFO B optional signal",
RadioSettingValueList(OPTSIG_LIST,
OPTSIG_LIST[_mem.vfo.b.optsig]))
work.append(vfoboptsig)

vfoaspmute = RadioSetting("vfo.a.spmute", "VFO A speaker mute",
RadioSettingValueList(SPMUTE_LIST,
SPMUTE_LIST[_mem.vfo.a.spmute]))
work.append(vfoaspmute)

vfobspmute = RadioSetting("vfo.b.spmute", "VFO B speaker mute",
RadioSettingValueList(SPMUTE_LIST,
SPMUTE_LIST[_mem.vfo.b.spmute]))
work.append(vfobspmute)

vfoascr = RadioSetting("vfo.a.scramble", "VFO A scramble",
RadioSettingValueBoolean(_mem.vfo.a.scramble))
work.append(vfoascr)

vfobscr = RadioSetting("vfo.b.scramble", "VFO B scramble",
RadioSettingValueBoolean(_mem.vfo.b.scramble))
work.append(vfobscr)

vfoascode = RadioSetting("vfo.a.scode", "VFO A PTT-ID",
RadioSettingValueList(PTTIDCODE_LIST,
PTTIDCODE_LIST[_mem.vfo.a.scode]))
work.append(vfoascode)

vfobscode = RadioSetting("vfo.b.scode", "VFO B PTT-ID",
RadioSettingValueList(PTTIDCODE_LIST,
PTTIDCODE_LIST[_mem.vfo.b.scode]))
work.append(vfobscode)

pttid = RadioSetting("settings.pttid", "PTT ID",
RadioSettingValueList(PTTID_LIST,
PTTID_LIST[_mem.settings.pttid]))
work.append(pttid)

return top

def set_settings(self, settings):
_settings = self._memobj.settings
for element in settings:
if not isinstance(element, RadioSetting):
if element.get_name() == "fm_preset":
self._set_fm_preset(element)
else:
self.set_settings(element)
continue
else:
try:
name = element.get_name()
if "." in name:
bits = name.split(".")
obj = self._memobj
for bit in bits[:-1]:
if "/" in bit:
bit, index = bit.split("/", 1)
index = int(index)
obj = getattr(obj, bit)[index]
else:
obj = getattr(obj, bit)
setting = bits[-1]
else:
obj = _settings
setting = element.get_name()

if element.has_apply_callback():
LOG.debug("Using apply callback")
element.run_apply_callback()
elif setting == "vfomren":
setattr(obj, setting, not int(element.value))
elif element.value.get_mutable():
LOG.debug("Setting %s = %s" % (setting, element.value))
setattr(obj, setting, element.value)
except Exception, e:
LOG.debug(element.get_name())
raise

@classmethod
def match_model(cls, filedata, filename):
match_size = False
match_model = False

# testing the file data size
if len(filedata) == MEM_SIZE:
match_size = True

# testing the firmware model fingerprint
match_model = model_match(cls, filedata)

if match_size and match_model:
return True
else:
return False


@directory.register
class UV2501(BTech):
"""Baofeng Tech UV2501"""
MODEL = "UV-2501"
_fileid = [UV2501G2_fp, UV2501pp2_fp, UV2501pp_fp]


@directory.register
class UV2501_220(BTech):
"""Baofeng Tech UV2501+220"""
MODEL = "UV-2501+220"
_magic = MSTRING_220
_fileid = [UV2501_220G2_fp, UV2501_220_fp, UV2501_220pp_fp]
_id2 = UV2501_220pp_id


@directory.register
class UV5001(BTech):
"""Baofeng Tech UV5001"""
MODEL = "UV-5001"
_fileid = [UV5001G22_fp, UV5001G2_fp, UV5001alpha_fp, UV5001pp_fp]


@directory.register
class MINI8900(BTech):
"""WACCOM MINI-8900"""
VENDOR = "WACCOM"
MODEL = "MINI-8900"
_magic = MSTRING_MINI8900
_fileid = [MINI8900_fp, ]


@directory.register
class KTUV980(BTech):
"""QYT KT-UV980"""
VENDOR = "QYT"
MODEL = "KT-UV980"
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_MINI8900
_fileid = [KTUV980_fp, ]


@directory.register
class KT9800(BTech):
"""QYT KT8900"""
VENDOR = "QYT"
MODEL = "KT8900"
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900
_fileid = [KT8900_fp, KT8900_fp2, GT890_fp]
_id2 = KT8900_id


@directory.register
class GT890(BTech):
"""Sainsonic GT890"""
VENDOR = "Sainsonic"
MODEL = "GT-890"
# ranges are the same as btech's defaults
_magic = MSTRING_KT8900
_fileid = [GT890_fp, KT8900_fp]
_id2 = KT8900_id
(2-2/4)