Project

General

Profile

New Model #7599 » ftlx011.py

Pavel Milanes, 07/30/2021 07:41 PM

 
# Copyright 2019 Pavel Milanes, CO7WT <pavelmc@gmail.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

import struct
import os
import logging
import time

from time import sleep
from chirp import chirp_common, directory, memmap, errors, util, bitwise
from chirp.settings import RadioSettingGroup, RadioSetting, \
RadioSettingValueBoolean, RadioSettingValueList, \
RadioSettingValueString, RadioSettingValueInteger, \
RadioSettingValueFloat, RadioSettings, InvalidValueError
from textwrap import dedent

LOG = logging.getLogger(__name__)

### SAMPLE MEM DUMP as sent from the radios

# FTL-1011
#0x000000 52 f0 16 90 04 08 38 c0 00 00 00 01 00 00 00 ff |R.....8.........|
#0x000010 20 f1 00 20 00 00 00 20 04 47 25 04 47 25 00 00 | .. ... .G%.G%..|

# FTL-2011
#0x000000: 50 90 21 40 04 80 fc 40 00 00 00 01 00 00 00 ff |P.!@...@........|
#0x000010: 20 f1 00 0b 00 00 00 0b 14 51 70 14 45 70 00 00 |.........Qp.Ep..|


MEM_FORMAT = """
#seekto 0x000;
u8 rid; // Radio Identification
u8 scan_time:4, // Scan timer per channel: 0-15 (5-80msec in 5msec steps)
unknownA:4;
bbcd if[2]; // Radio internal IF, depending on model (16.90, 21.40, 45.10, 47.90)
u8 chcount; // how many channels are programmed
u8 scan_resume:1, // Scan sesume: 0 = 0.5 seconds, 1 = Carrier
priority_during_scan:1, // Priority during scan: 0 = enabled, 1 = disabled
priority_speed:1, // Priority speed: 0 = slow, 1 = fast
monitor:1, // Monitor: 0 = enabled, 1 = disabled
off_hook:1, // Off hook: 0 = enabled, 1 = disabled
home_channel:1, // Home Channel: 0 = Scan Start ch, 1 = Priority 1ch
talk_back:1, // Talk Back: 0 = enabled, 1 = disabled
tx_carrier_delay:1; // TX carrier delay: 1 = enabled, 0 = disabled
u8 tot:4, // Time out timer: 16 values (0.0-7.5 in 0.5s step)
tot_resume:2, // Time out timer resume: 3, 2, 1, 0 => 0s, 6s, 20s, 60s
unknownB:2;
u8 a_key:4, // A key function: resume: 0-3: Talkaround, High/Low, Call, Accessory
unknownB:4;

#seekto 0x010;
struct {
u8 notx:1, // 0 = Tx posible, 1 = Tx disabled
empty:1, // 0 = channel enabled, 1 = channed empty
tot:1, // 0 = tot disabled, 1 = tot enabled
power:1, // 0 = high, 1 = low
bclo_cw:1, // 0 = disabled, 1 = Busy Channel Lock out by carrier
bclo_tone:1, // 0 = disabled, 1 = Busy Channel Lock out by tone (set rx tone)
skip:1, // 0 = scan enabled, 1 = skip on scanning
unknownA0:1;
u8 chname;
u8 rx_tone[2]; // empty value is \x00\x0B / disabled is \x00\x00
u8 unknown4;
u8 unknown5;
u8 tx_tone[2]; // empty value is \x00\x0B / disabled is \x00\x00
bbcd rx_freq[3]; // RX freq
bbcd tx_freq[3]; // TX freq
u8 unknownA[2];
} memory[24];

#seekto 0x0190;
char filename[11];

#seekto 0x19C;
u8 checksum;
"""

MEM_SIZE = 0x019C
POWER_LEVELS = [chirp_common.PowerLevel("High", watts=50),
chirp_common.PowerLevel("Low", watts=5)]
DTCS_CODES = chirp_common.DTCS_CODES
SKIP_VALUES = ["", "S"]
LIST_BCL = ["OFF", "Carrier", "Tone"]
# make a copy of the tones, is not funny to work with this directly
TONES = list(chirp_common.TONES)
# this old radios has not the full tone ranges in CST
invalid_tones = (
69.3,
159.8,
165.5,
171.3,
177.3,
183.5,
189.9,
196.6,
199.5,
206.5,
229.1,
245.1)

# remove invalid tones
for tone in invalid_tones:
try:
TONES.remove(tone)
except:
pass


def _set_serial(radio):
"""Set the serial protocol settings"""
radio.pipe.timeout = 10
radio.pipe.parity = "N"
radio.pipe.baudrate = 9600


def _checksum(data):
"""the radio block checksum algorithm"""
cs = 0
for byte in data:
cs += ord(byte)

return cs % 256


def _update_cs(radio):
"""Update the checksum on the mmap"""
payload = str(radio.get_mmap())[:-1]
cs = _checksum(payload)
radio._mmap[MEM_SIZE - 1] = cs


def _do_download(radio):
""" The download function """
# Get the whole 413 bytes (0x019D) bytes one at a time with plenty of time
# to get to the user's pace

# set serial discipline
_set_serial(radio)

# UI progress
status = chirp_common.Status()
status.cur = 0
status.max = MEM_SIZE
status.msg = " Press A to clone. "
radio.status_fn(status)

data = ""
for i in range(0, MEM_SIZE):
a = radio.pipe.read(1)
if len(a) == 0:
# error, no received data
if len(data) != 0:
# received some data, not the complete stream
msg = "Just %02i bytes of the %02i received, try again." % \
(len(data), MEM_SIZE)
else:
# timeout, please retry
msg = "No data received, try again."

raise errors.RadioError(msg)

data += a
# UI Update
status.cur = len(data)
radio.status_fn(status)

if len(data) != MEM_SIZE:
msg = "Incomplete data, we need %02i but got %02i bytes." % \
(MEM_SIZE, len(data))
raise errors.RadioError(msg)

if ord(data[-1]) != _checksum(data[:-1]):
msg = "Bad checksum, please try again."
raise errors.RadioError(msg)

return data


def _do_upload(radio):
"""The upload function"""
# set serial discipline
_set_serial(radio)

# UI progress
status = chirp_common.Status()

# 10 seconds timeout
status.cur = 0
status.max = 100
status.msg = " Quick, press MON on the radio to start. "
radio.status_fn(status)

for byte in range(0,100):
status.cur = byte
radio.status_fn(status)
time.sleep(0.1)


# real upload if user don't cancel the timeout
status.cur = 0
status.max = MEM_SIZE
status.msg = " Cloning to radio... "
radio.status_fn(status)

# send data
data = str(radio.get_mmap())

# this radio has a trick, the EEPROM is an ancient SPI one, so it needs
# some time to write, so we send every byte and then allow
# a 0.01 seg to complete the write from the MCU to the SPI EEPROM
c = 0
for byte in data:
radio.pipe.write(byte)
time.sleep(0.01)

# UI Update
status.cur = c
radio.status_fn(status)

# counter
c = c + 1


def _model_match(cls, data):
"""Use a experimental guess to determine if the radio you just
downloaded or the img you opened is for this model"""

# It's hard to tell when this radio is really this radio.
# I use the first byte, that appears to be the ID and the IF settings

LOG.debug("Drivers's ID string:")
LOG.debug(cls.finger)
LOG.debug("Radio's ID string:")
LOG.debug(util.hexprint(data[0:4]))

radiod = [data[0], data[2:4]]
if cls.finger == radiod:
return True
else:
return False


def bcd_to_int(data):
"""Convert an array of bcdDataElement like \x12
into an int like 12"""
value = 0
a = (data & 0xF0) >> 4
b = data & 0x0F
value = (a * 10) + b
return value


def int_to_bcd(data):
"""Convert a int like 94 to 0x94"""
data, lsb = divmod(data, 10)
data, msb = divmod(data, 10)
res = (msb << 4) + lsb
return res


class ftlx011(chirp_common.CloneModeRadio, chirp_common.ExperimentalRadio):
"""Vertex FTL1011/2011/7011 4/8/12/24 channels"""
VENDOR = "Vertex Standard"
_memsize = MEM_SIZE
_upper = 0
_range = []
finger = [] # two elements rid & IF

@classmethod
def get_prompts(cls):
rp = chirp_common.RadioPrompts()
rp.experimental = \
('This is a experimental driver, use it on your own risk.\n'
'\n'
'This driver is just for the 4/12/24 channels variants of '
'these radios, 99 channel variants are not supported yet.\n'
'\n'
'The 99 channel versions appears to use another mem layout.\n'
)
rp.pre_download = _(dedent("""\
Please follow this steps carefully:

1 - Turn on your radio
2 - Connect the interface cable to your radio.
3 - Click the button on this window to start download
(Radio will beep and led will flash)
4 - Then press the "A" button in your radio to start cloning.
(At the end radio will beep)
"""))
rp.pre_upload = _(dedent("""\
Please follow this steps carefully:

1 - Turn on your radio
2 - Connect the interface cable to your radio
3 - Click the button on this window to start download
(you may see another dialog, click ok)
4 - Radio will beep and led will flash
5 - You will get a 10 seconds timeout to press "MON" before
data upload start
6 - If all goes right radio will beep at end.

After cloning remove the cable and power cycle your radio to
get into normal mode.
"""))
return rp

def get_features(self):
"""Return information about this radio's features"""
rf = chirp_common.RadioFeatures()
rf.has_settings = False
rf.has_bank = False
rf.has_tuning_step = False
rf.has_name = False
rf.has_offset = True
rf.has_mode = True
rf.has_dtcs = True
rf.has_rx_dtcs = True
rf.has_dtcs_polarity = False
rf.has_ctone = True
rf.has_cross = True
rf.valid_duplexes = ["", "-", "+", "off"]
rf.valid_tmodes = ['', 'Tone', 'TSQL', 'DTCS', 'Cross']
rf.valid_cross_modes = [
"Tone->Tone",
"DTCS->DTCS",
"DTCS->",
"->DTCS"]
rf.valid_dtcs_codes = DTCS_CODES
rf.valid_skips = SKIP_VALUES
rf.valid_modes = ["FM"]
rf.valid_power_levels = POWER_LEVELS
#rf.valid_tuning_steps = [5.0]
rf.valid_bands = [self._range]
rf.memory_bounds = (1, self._upper)
return rf

def sync_in(self):
"""Do a download of the radio eeprom"""
try:
data = _do_download(self)
except Exception, e:
raise errors.RadioError("Failed to communicate with radio:\n %s" % e)

# match model
if _model_match(self, data) is False:
raise errors.RadioError("Incorrect radio model")

self._mmap = memmap.MemoryMap(data)
self.process_mmap()

# set the channel count from the radio eeprom
self._upper = int(ord(data[4]))

def sync_out(self):
"""Do an upload to the radio eeprom"""
# update checksum
_update_cs(self)

# sanity check, match model
data = str(self.get_mmap())
if len(data) != MEM_SIZE:
raise errors.RadioError("Wrong radio image? Size miss match.")

if _model_match(self, data) is False:
raise errors.RadioError("Wrong image? Fingerprint miss match")

try:
_do_upload(self)
except Exception, e:
msg = "Failed to communicate with radio:\n%s" % e
raise errors.RadioError(msg)

def process_mmap(self):
"""Process the memory object"""
self._memobj = bitwise.parse(MEM_FORMAT, self._mmap)

def get_raw_memory(self, number):
"""Return a raw representation of the memory object"""
return repr(self._memobj.memory[number])

def _decode_tone(self, mem, rx=True):
"""Parse the tone data to decode from mem tones are encodded like this
CTCS: mapped [0x80...0xa5] = [67.0...250.3]
DTCS: mixed [0x88, 0x23] last is BCD and first is the 100 power - 88

It return: ((''|DTCS|Tone), Value (None|###), None)"""
mode = ""
tone = None

# get the tone depending of rx or tx
if rx:
t = mem.rx_tone
else:
t = mem.tx_tone
tMSB = t[0]
tLSB = t[1]

# no tone at all
if (tMSB == 0 and tLSB < 128):
return ('', None, None)

# extract the tone info
if tMSB == 0x00:
# CTCS
mode = "Tone"
try:
tone = TONES[tLSB - 128]
except IndexError:
LOG.debug("Error decoding a CTCS tone")
pass
else:
# DTCS
mode = "DTCS"
try:
tone = ((tMSB - 0x88) * 100) + bcd_to_int(tLSB)
except IndexError:
LOG.debug("Error decoding a DTCS tone")
pass

return (mode, tone, None)

def _encode_tone(self, mem, mode, value, pol, rx=True):
"""Parse the tone data to encode from UI to mem
CTCS: mapped [0x80...0xa5] = [67.0...250.3]
DTCS: mixed [0x88, 0x23] last is BCD and first is the 100 power - 88
"""

# array to pass
tone = [0x00, 0x00]

# which mod
if mode == "DTCS":
tone[0] = int(value / 100) + 0x88
tone[1] = int_to_bcd(value % 100)
if mode == "Tone":
#CTCS
tone[1] = TONES.index(value) + 128

# set it
if rx:
mem.rx_tone = tone
else:
mem.tx_tone = tone

def get_memory(self, number):
"""Extract a memory object from the memory map"""
# Get a low-level memory object mapped to the image
_mem = self._memobj.memory[number - 1]
# Create a high-level memory object to return to the UI
mem = chirp_common.Memory()
# number
mem.number = number

# empty
if bool(_mem.empty) is True:
mem.empty = True
return mem

# rx freq
mem.freq = int(_mem.rx_freq) * 1000

# power
mem.power = POWER_LEVELS[int(_mem.power)]

# checking if tx freq is disabled
if bool(_mem.notx) is True:
mem.duplex = "off"
mem.offset = 0
else:
tx = int(_mem.tx_freq) * 1000
if tx == mem.freq:
mem.offset = 0
mem.duplex = ""
else:
mem.duplex = mem.freq > tx and "-" or "+"
mem.offset = abs(tx - mem.freq)

# skip
mem.skip = SKIP_VALUES[_mem.skip]

# tone data
rxtone = txtone = None
rxtone = self._decode_tone(_mem)
txtone = self._decode_tone(_mem, False)
chirp_common.split_tone_decode(mem, txtone, rxtone)

# this radio has a primitive mode to show the channel number on a 7-segment
# two digit LCD, we will use channel number
# we will use a trick to show the numbers < 10 wit a space not a zero in front
chname = int_to_bcd(mem.number)
if mem.number < 10:
# convert to F# as BCD
chname = mem.number + 240

_mem.chname = chname

# Extra
mem.extra = RadioSettingGroup("extra", "Extra")

# bcl preparations: ["OFF", "Carrier", "Tone"]
bcls = 0
if _mem.bclo_cw:
bcls = 1
if _mem.bclo_tone:
bcls = 2

bcl = RadioSetting("bclo", "Busy channel lockout",
RadioSettingValueList(LIST_BCL,
LIST_BCL[bcls]))
mem.extra.append(bcl)

# return mem
return mem

def set_memory(self, mem):
"""Store details about a high-level memory to the memory map
This is called when a user edits a memory in the UI"""
# Get a low-level memory object mapped to the image
_mem = self._memobj.memory[mem.number - 1]

# Empty memory
if mem.empty:
_mem.empty = True
_mem.rx_freq = _mem.tx_freq = 0
return

# freq rx
_mem.rx_freq = mem.freq / 1000

# power, # default power level is high
_mem.power = 0 if mem.power is None else POWER_LEVELS.index(mem.power)

# freq tx
if mem.duplex == "+":
_mem.tx_freq = (mem.freq + mem.offset) / 1000
elif mem.duplex == "-":
_mem.tx_freq = (mem.freq - mem.offset) / 1000
elif mem.duplex == "off":
_mem.notx = 1
_mem.tx_freq = _mem.rx_freq
else:
_mem.tx_freq = mem.freq / 1000

# scan add property
_mem.skip = SKIP_VALUES.index(mem.skip)

# tone data
((txmode, txtone, txpol), (rxmode, rxtone, rxpol)) = \
chirp_common.split_tone_encode(mem)

# validate tone data from here
if rxmode == "Tone" and rxtone in invalid_tones:
msg = "The tone %shz is not valid for this radio" % rxtone
raise errors.UnsupportedToneError(msg)

if txmode == "Tone" and txtone in invalid_tones:
msg = "The tone %shz is not valid for this radio" % txtone
raise errors.UnsupportedToneError(msg)

if rxmode == "DTCS" and rxtone not in DTCS_CODES:
msg = "The digital tone %s is not valid for this radio" % rxtone
raise errors.UnsupportedToneError(msg)

if txmode == "DTCS" and txtone not in DTCS_CODES:
msg = "The digital tone %s is not valid for this radio" % txtone
raise errors.UnsupportedToneError(msg)

self._encode_tone(_mem, rxmode, rxtone, rxpol)
self._encode_tone(_mem, txmode, txtone, txpol, False)

# this radio has a primitive mode to show the channel number on a 7-segment
# two digit LCD, we will use channel number
# we will use a trick to show the numbers < 10 wit a space not a zero in front
chname = int_to_bcd(mem.number)
if mem.number < 10:
# convert to F# as BCD
chname = mem.number + 240

def _zero_settings():
_mem.bclo_cw = 0
_mem.bclo_tone = 0

# extra settings
if len(mem.extra) > 0:
# there are setting, parse
LOG.debug("Extra-Setting supplied. Setting them.")
# Zero them all first so any not provided by model don't
# stay set
_zero_settings()
for setting in mem.extra:
if setting.get_name() == "bclo":
sw = LIST_BCL.index(str(setting.value))
if sw == 0:
# empty
_zero_settings()
if sw == 1:
# carrier
_mem.bclo_cw = 1
if sw == 2:
# tone
_mem.bclo_tone = 1
# activate the tone
_mem.rx_tone = [0x00, 0x80]

else:
# reset extra settings
_zero_settings()

_mem.chname = chname

return mem

@classmethod
def match_model(cls, filedata, filename):
match_size = False
match_model = False

# testing the file data size
if len(filedata) == cls._memsize:
match_size = True
print("Comp: %i file / %i memzise" % (len(filedata), cls._memsize) )

# testing the firmware fingerprint, this experimental
match_model = _model_match(cls, filedata)

if match_size and match_model:
return True
else:
return False


@directory.register
class ftl1011(ftlx011):
"""Vertex FTL-1011"""
MODEL = "FTL-1011"
_memsize = MEM_SIZE
_upper = 4
_range = [44000000, 56000000]
finger = ["\x52", "\x16\x90"]


@directory.register
class ftl2011(ftlx011):
"""Vertex FTL-2011"""
MODEL = "FTL-2011"
_memsize = MEM_SIZE
_upper = 24
_range = [134000000, 174000000]
finger = ["\x50", "\x21\x40"]


@directory.register
class ftl7011(ftlx011):
"""Vertex FTL-7011"""
MODEL = "FTL-7011"
_memsize = MEM_SIZE
_upper = 24
_range = [400000000, 512000000]
finger = ["\x54", "\x47\x90"]


@directory.register
class ftl8011(ftlx011):
"""Vertex FTL-8011"""
MODEL = "FTL-8011"
_memsize = MEM_SIZE
_upper = 24
_range = [400000000, 512000000]
finger = ["\x5c", "\x45\x10"]
(12-12/16)