Project

General

Profile

New Model #9816 » btech_M3B064.py

Jim Unroe, 04/01/2022 08:26 PM

 
# Copyright 2016-2022:
# * Pavel Milanes CO7WT, <pavelmc@gmail.com>
# * Jim Unroe KC9HI, <rock.unroe@gmail.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

import time
import struct
import logging

from time import sleep
from chirp import chirp_common, directory, memmap
from chirp import bitwise, errors, util
from chirp.settings import RadioSettingGroup, RadioSetting, \
RadioSettingValueBoolean, RadioSettingValueList, \
RadioSettingValueString, RadioSettingValueInteger, \
RadioSettingValueFloat, RadioSettings, InvalidValueError
from textwrap import dedent

LOG = logging.getLogger(__name__)

# A note about the memmory in these radios
#
# The real memory of these radios extends to 0x4000
# On read the factory software only uses up to 0x3200
# On write it just uploads the contents up to 0x3100
#
# The mem beyond 0x3200 holds the ID data

MEM_SIZE = 0x4000
BLOCK_SIZE = 0x40
TX_BLOCK_SIZE = 0x10
ACK_CMD = "\x06"
MODES = ["FM", "NFM"]
SKIP_VALUES = ["S", ""]
TONES = chirp_common.TONES
DTCS = sorted(chirp_common.DTCS_CODES + [645])

# lists related to "extra" settings
PTTID_LIST = ["OFF", "BOT", "EOT", "BOTH"]
PTTIDCODE_LIST = ["%s" % x for x in range(1, 16)]
OPTSIG_LIST = ["OFF", "DTMF", "2TONE", "5TONE"]
SPMUTE_LIST = ["Tone/DTCS", "Tone/DTCS and Optsig", "Tone/DTCS or Optsig"]

# lists
LIST_AB = ["A", "B"]
LIST_ABCD = LIST_AB + ["C", "D"]
LIST_ANIL = ["3", "4", "5"]
LIST_APO = ["Off"] + ["%s minutes" % x for x in range(30, 330, 30)]
LIST_COLOR4 = ["Off", "Blue", "Orange", "Purple"]
LIST_COLOR8 = ["White", "Red", "Blue", "Green", "Yellow", "Indego",
"Purple", "Gray"]
LIST_COLOR9 = ["Black"] + LIST_COLOR8
LIST_DTMFST = ["OFF", "Keyboard", "ANI", "Keyboad + ANI"]
LIST_EMCTP = ["TX alarm sound", "TX ANI", "Both"]
LIST_EMCTPX = ["Off"] + LIST_EMCTP
LIST_LANGUA = ["English", "Chinese"]
LIST_MDF = ["Frequency", "Channel", "Name"]
LIST_OFF1TO9 = ["Off"] + ["%s seconds" % x for x in range(1, 10)]
LIST_OFF1TO10 = ["Off"] + ["%s seconds" % x for x in range(1, 11)]
LIST_OFF1TO50 = ["Off"] + ["%s seconds" % x for x in range(1, 51)]
LIST_PONMSG = ["Full", "Message", "Battery voltage"]
LIST_REPM = ["Off", "Carrier", "CTCSS or DCS", "Tone", "DTMF"]
LIST_REPS = ["1000 Hz", "1450 Hz", "1750 Hz", "2100Hz"]
LIST_RPTDL = ["Off"] + ["%s ms" % x for x in range(1, 11)]
LIST_SCMODE = ["Off", "PTT-SC", "MEM-SC", "PON-SC"]
LIST_SHIFT = ["Off", "+", "-"]
LIST_SKIPTX = ["Off", "Skip 1", "Skip 2"]
STEPS = [2.5, 5.0, 6.25, 10.0, 12.5, 25.0]
LIST_STEP = [str(x) for x in STEPS]
LIST_SYNC = ["Off", "AB", "CD", "AB+CD"]
# the first 12 TMR choices common to all color display mobile radios
LIST_TMR12 = ["OFF", "M+A", "M+B", "M+C", "M+D", "M+A+B", "M+A+C", "M+A+D",
"M+B+C", "M+B+D", "M+C+D", "M+A+B+C"]
# the 16 choice list for color display mobile radios that correctly implement
# the full 16 TMR choices
LIST_TMR16 = LIST_TMR12 + ["M+A+B+D", "M+A+C+D", "M+B+C+D", "A+B+C+D"]
# the 15 choice list for color mobile radios that are missing the M+A+B+D
# choice in the TMR menu
LIST_TMR15 = LIST_TMR12 + ["M+A+C+D", "M+B+C+D", "A+B+C+D"]
LIST_TMRTX = ["Track", "Fixed"]
LIST_TOT = ["%s sec" % x for x in range(15, 615, 15)]
LIST_TXDISP = ["Power", "Mic Volume"]
LIST_TXP = ["High", "Low"]
LIST_TXP3 = ["High", "Mid", "Low"]
LIST_SCREV = ["TO (timeout)", "CO (carrier operated)", "SE (search)"]
LIST_VFOMR = ["Frequency", "Channel"]
LIST_VOICE = ["Off"] + LIST_LANGUA
LIST_VOX = ["Off"] + ["%s" % x for x in range(1, 11)]
LIST_VOXT = ["%s seconds" % x for x in range(0, 21)]
LIST_WIDE = ["Wide", "Narrow"]

# lists related to DTMF, 2TONE and 5TONE settings
LIST_5TONE_STANDARDS = ["CCIR1", "CCIR2", "PCCIR", "ZVEI1", "ZVEI2", "ZVEI3",
"PZVEI", "DZVEI", "PDZVEI", "EEA", "EIA", "EURO",
"CCITT", "NATEL", "MODAT", "none"]
LIST_5TONE_STANDARDS_without_none = ["CCIR1", "CCIR2", "PCCIR", "ZVEI1",
"ZVEI2", "ZVEI3",
"PZVEI", "DZVEI", "PDZVEI", "EEA", "EIA",
"EURO", "CCITT", "NATEL", "MODAT"]
LIST_5TONE_STANDARD_PERIODS = ["20", "30", "40", "50", "60", "70", "80", "90",
"100", "110", "120", "130", "140", "150", "160",
"170", "180", "190", "200"]
LIST_5TONE_DIGITS = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A",
"B", "C", "D", "E", "F"]
LIST_5TONE_DELAY = ["%s ms" % x for x in range(0, 1010, 10)]
LIST_5TONE_RESET = ["%s ms" % x for x in range(100, 8100, 100)]
LIST_5TONE_RESET_COLOR = ["%s ms" % x for x in range(100, 20100, 100)]
LIST_DTMF_SPEED = ["%s ms" % x for x in range(50, 2010, 10)]
LIST_DTMF_DIGITS = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B",
"C", "D", "#", "*"]
LIST_DTMF_VALUES = [0x0A, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0D, 0x0E, 0x0F, 0x00, 0x0C, 0x0B]
LIST_DTMF_SPECIAL_DIGITS = ["*", "#", "A", "B", "C", "D"]
LIST_DTMF_SPECIAL_VALUES = [0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x00]
LIST_DTMF_DELAY = ["%s ms" % x for x in range(100, 4100, 100)]
CHARSET_DTMF_DIGITS = "0123456789AaBbCcDd#*"
LIST_2TONE_DEC = ["A-B", "A-C", "A-D",
"B-A", "B-C", "B-D",
"C-A", "C-B", "C-D",
"D-A", "D-B", "D-C"]
LIST_2TONE_RESPONSE = ["None", "Alert", "Transpond", "Alert+Transpond"]

# This is a general serial timeout for all serial read functions.
# Practice has show that about 0.7 sec will be enough to cover all radios.
STIMEOUT = 0.7

# this var controls the verbosity in the debug and by default it's low (False)
# make it True and you will to get a very verbose debug.log
debug = False

# valid chars on the LCD, Note that " " (space) is stored as "\xFF"
VALID_CHARS = chirp_common.CHARSET_ALPHANUMERIC + \
"`{|}!\"#$%&'()*+,-./:;<=>?@[]^_"

GMRS_FREQS1 = [462.5625, 462.5875, 462.6125, 462.6375, 462.6625,
462.6875, 462.7125]
GMRS_FREQS2 = [467.5625, 467.5875, 467.6125, 467.6375, 467.6625,
467.6875, 467.7125]
GMRS_FREQS3 = [462.5500, 462.5750, 462.6000, 462.6250, 462.6500,
462.6750, 462.7000, 462.7250]
GMRS_FREQS = GMRS_FREQS1 + GMRS_FREQS2 + GMRS_FREQS3 * 2


# #### ID strings #####################################################

# BTECH UV2501 pre-production units
UV2501pp_fp = "M2C294"
# BTECH UV2501 pre-production units 2 + and 1st Gen radios
UV2501pp2_fp = "M29204"
# B-TECH UV-2501 second generation (2G) radios
UV2501G2_fp = "BTG214"
# B-TECH UV-2501 third generation (3G) radios
UV2501G3_fp = "BTG324"

# B-TECH UV-2501+220 pre-production units
UV2501_220pp_fp = "M3C281"
# extra block read for the 2501+220 pre-production units
# the same for all of this radios so far
UV2501_220pp_id = " 280528"
# B-TECH UV-2501+220
UV2501_220_fp = "M3G201"
# new variant, let's call it Generation 2
UV2501_220G2_fp = "BTG211"
# B-TECH UV-2501+220 third generation (3G)
UV2501_220G3_fp = "BTG311"

# B-TECH UV-5001 pre-production units + 1st Gen radios
UV5001pp_fp = "V19204"
# B-TECH UV-5001 alpha units
UV5001alpha_fp = "V28204"
# B-TECH UV-5001 second generation (2G) radios
UV5001G2_fp = "BTG214"
# B-TECH UV-5001 second generation (2G2)
UV5001G22_fp = "V2G204"
# B-TECH UV-5001 third generation (3G)
UV5001G3_fp = "BTG304"

# B-TECH UV-25X2
UV25X2_fp = "UC2012"

# B-TECH UV-25X4
UV25X4_fp = "UC4014"

# B-TECH UV-50X2
UV50X2_fp = "UC2M12"

# B-TECH GMRS-50X1
GMRS50X1_fp = "NC1802"
GMRS50X1_fp1 = "NC1932"

# special var to know when we found a BTECH Gen 3
BTECH3 = [UV2501G3_fp, UV2501_220G3_fp, UV5001G3_fp]


# WACCOM Mini-8900
MINI8900_fp = "M28854"


# QYT KT-UV980
KTUV980_fp = "H28854"

# QYT KT8900
KT8900_fp = "M29154"
# New generations KT8900
KT8900_fp1 = "M2C234"
KT8900_fp2 = "M2G1F4"
KT8900_fp3 = "M2G2F4"
KT8900_fp4 = "M2G304"
KT8900_fp5 = "M2G314"
KT8900_fp6 = "M2G424"
KT8900_fp7 = "M27184"
# this radio has an extra ID
KT8900_id = "303688"
# another extra ID in sep/2021
KT8900_id2 = "\x05\x58\x3d\xf0\x10"

# KT8900R
KT8900R_fp = "M3G1F4"
# Second Generation
KT8900R_fp1 = "M3G214"
# another model
KT8900R_fp2 = "M3C234"
# another model G4?
KT8900R_fp3 = "M39164"
# another model
KT8900R_fp4 = "M3G314"
# AC3MB: another id
KT8900R_fp5 = "M3B064"
# this radio has an extra ID
KT8900R_id = "280528"
# another extra ID in dec/2018
KT8900R_id2 = "\x05\x58\x3d\xf0\x10"

# KT7900D (quad band)
KT7900D_fp = "VC4004"
KT7900D_fp1 = "VC4284"
KT7900D_fp2 = "VC4264"
KT7900D_fp3 = "VC4114"
KT7900D_fp4 = "VC4104"
KT7900D_fp5 = "VC4254"
KT7900D_fp6 = "VC5264"
KT7900D_fp7 = "VC9204"

# QB25 (quad band) - a clone of KT7900D
QB25_fp = "QB-25"

# KT8900D (dual band)
KT8900D_fp = "VC2002"
KT8900D_fp1 = "VC8632"
KT8900D_fp2 = "VC3402"
KT8900D_fp3 = "VC7062"

# LUITON LT-588UV
LT588UV_fp = "V2G1F4"
# Added by rstrickoff gen 2 id
LT588UV_fp1 = "V2G214"

# QYT KT-8R (quad band ht)
KT8R_fp = "MCB264"
KT8R_fp1 = "MCB284"
KT8R_fp2 = "MC5264"

# QYT KT5800 (dual band)
KT5800_fp = "VCB222"

# QYT KT980Plus (dual band)
KT980PLUS_fp = "VC2002"
KT980PLUS_fp1 = "VC6042"

# Radioddity DB25-G (gmrs)
DB25G_fp = "VC6182"
DB25G_fp1 = "VC7062"


# ### MAGICS
# for the Waccom Mini-8900
MSTRING_MINI8900 = "\x55\xA5\xB5\x45\x55\x45\x4d\x02"
# for the B-TECH UV-2501+220 (including pre production ones)
MSTRING_220 = "\x55\x20\x15\x12\x12\x01\x4d\x02"
# for the QYT KT8900 & R
MSTRING_KT8900 = "\x55\x20\x15\x09\x16\x45\x4D\x02"
MSTRING_KT8900R = "\x55\x20\x15\x09\x25\x01\x4D\x02"
# magic string for all other models
MSTRING = "\x55\x20\x15\x09\x20\x45\x4d\x02"
# for the QYT KT7900D & KT8900D
MSTRING_KT8900D = "\x55\x20\x16\x08\x01\xFF\xDC\x02"
# for the BTECH UV-25X2 and UV-50X2
MSTRING_UV25X2 = "\x55\x20\x16\x12\x28\xFF\xDC\x02"
# for the BTECH UV-25X4
MSTRING_UV25X4 = "\x55\x20\x16\x11\x18\xFF\xDC\x02"
# for the BTECH GMRS-50X1
MSTRING_GMRS50X1 = "\x55\x20\x18\x10\x18\xFF\xDC\x02"
# for the QYT KT-8R
MSTRING_KT8R = "\x55\x20\x17\x07\x03\xFF\xDC\x02"


def _clean_buffer(radio):
"""Cleaning the read serial buffer, hard timeout to survive an infinite
data stream"""

# touching the serial timeout to optimize the flushing
# restored at the end to the default value
radio.pipe.timeout = 0.1
dump = "1"
datacount = 0

try:
while len(dump) > 0:
dump = radio.pipe.read(100)
datacount += len(dump)
# hard limit to survive a infinite serial data stream
# 5 times bigger than a normal rx block (69 bytes)
if datacount > 345:
seriale = "Please check your serial port selection."
raise errors.RadioError(seriale)

# restore the default serial timeout
radio.pipe.timeout = STIMEOUT

except Exception:
raise errors.RadioError("Unknown error cleaning the serial buffer")


def _rawrecv(radio, amount):
"""Raw read from the radio device, less intensive way"""

data = ""

try:
data = radio.pipe.read(amount)

# DEBUG
if debug is True:
LOG.debug("<== (%d) bytes:\n\n%s" %
(len(data), util.hexprint(data)))

# fail if no data is received
if len(data) == 0:
raise errors.RadioError("No data received from radio")

# notice on the logs if short
if len(data) < amount:
LOG.warn("Short reading %d bytes from the %d requested." %
(len(data), amount))

except:
raise errors.RadioError("Error reading data from radio")

return data


def _send(radio, data):
"""Send data to the radio device"""

try:
for byte in data:
radio.pipe.write(byte)
# Some OS (mainly Linux ones) are too fast on the serial and
# get the MCU inside the radio stuck in the early stages, this
# hits some models more than others.
#
# To cope with that we introduce a delay on the writes.
# Many option have been tested (delaying only after error occures,
# after short reads, only for linux, ...)
# Finally, a static delay was chosen as simplest of all solutions
# (Michael Wagner, OE4AMW)
# (for details, see issue 3993)
sleep(0.002)

# DEBUG
if debug is True:
LOG.debug("==> (%d) bytes:\n\n%s" %
(len(data), util.hexprint(data)))
except:
raise errors.RadioError("Error sending data to radio")


def _make_frame(cmd, addr, length, data=""):
"""Pack the info in the headder format"""
frame = "\x06" + struct.pack(">BHB", ord(cmd), addr, length)
# add the data if set
if len(data) != 0:
frame += data

return frame


def _recv(radio, addr):
"""Get data from the radio all at once to lower syscalls load"""

# Get the full 69 bytes at a time to reduce load
# 1 byte ACK + 4 bytes header + 64 bytes of data (BLOCK_SIZE)

# get the whole block
block = _rawrecv(radio, BLOCK_SIZE + 5)

# basic check
if len(block) < (BLOCK_SIZE + 5):
raise errors.RadioError("Short read of the block 0x%04x" % addr)

# checking for the ack
if block[0] != ACK_CMD:
raise errors.RadioError("Bad ack from radio in block 0x%04x" % addr)

# header validation
c, a, l = struct.unpack(">BHB", block[1:5])
if a != addr or l != BLOCK_SIZE or c != ord("X"):
LOG.debug("Invalid header for block 0x%04x" % addr)
LOG.debug("CMD: %s ADDR: %04x SIZE: %02x" % (c, a, l))
raise errors.RadioError("Invalid header for block 0x%04x:" % addr)

# return the data
return block[5:]


def _start_clone_mode(radio, status):
"""Put the radio in clone mode and get the ident string, 3 tries"""

# cleaning the serial buffer
_clean_buffer(radio)

# prep the data to show in the UI
status.cur = 0
status.msg = "Identifying the radio..."
status.max = 3
radio.status_fn(status)

try:
for a in range(0, status.max):
# Update the UI
status.cur = a + 1
radio.status_fn(status)

# send the magic word
_send(radio, radio._magic)

# Now you get a x06 of ACK if all goes well
ack = radio.pipe.read(1)

if ack == "\x06":
# DEBUG
LOG.info("Magic ACK received")
status.cur = status.max
radio.status_fn(status)

return True

return False

except errors.RadioError:
raise
except Exception, e:
raise errors.RadioError("Error sending Magic to radio:\n%s" % e)


def _do_ident(radio, status, upload=False):
"""Put the radio in PROGRAM mode & identify it"""
# set the serial discipline
radio.pipe.baudrate = 9600
radio.pipe.parity = "N"

# open the radio into program mode
if _start_clone_mode(radio, status) is False:
msg = "Radio did not enter clone mode"
# warning about old versions of QYT KT8900
if radio.MODEL == "KT8900":
msg += ". You may want to try it as a WACCOM MINI-8900, there is a"
msg += " known variant of this radios that is a clone of it."
raise errors.RadioError(msg)

# Ok, get the ident string
ident = _rawrecv(radio, 49)

# basic check for the ident
if len(ident) != 49:
raise errors.RadioError("Radio send a short ident block.")

# check if ident is OK
itis = False
for fp in radio._fileid:
if fp in ident:
# got it!
itis = True
# checking if we are dealing with a Gen 3 BTECH
if radio.VENDOR == "BTECH" and fp in BTECH3:
radio.btech3 = True

break

if itis is False:
LOG.debug("Incorrect model ID, got this:\n\n" + util.hexprint(ident))
raise errors.RadioError("Radio identification failed.")

# some radios needs a extra read and check for a code on it, this ones
# has the check value in the _id2 var, others simply False
if radio._id2 is not False:
# lower the timeout here as this radios are reseting due to timeout
radio.pipe.timeout = 0.05

# query & receive the extra ID
_send(radio, _make_frame("S", 0x3DF0, 16))
id2 = _rawrecv(radio, 21)

# WARNING !!!!!!
# different radios send a response with a different amount of data
# it seems that it's padded with \xff, \x20 and some times with \x00
# we just care about the first 16, our magic string is in there
if len(id2) < 16:
raise errors.RadioError("The extra ID is short, aborting.")

# ok, the correct string must be in the received data
# the radio._id2 var will be always a list
flag2 = False
for _id2 in radio._id2:
if _id2 in id2:
flag2 = True

if not flag2:
LOG.debug("Full *BAD* extra ID on the %s is: \n%s" %
(radio.MODEL, util.hexprint(id2)))
raise errors.RadioError("The extra ID is wrong, aborting.")

# this radios need a extra request/answer here on the upload
# the amount of data received depends of the radio type
#
# also the first block of TX must no have the ACK at the beginning
# see _upload for this.
if upload is True:
# send an ACK
_send(radio, ACK_CMD)

# the amount of data depend on the radio, so far we have two radios
# reading two bytes with an ACK at the end and just ONE with just
# one byte (QYT KT8900)
# the JT-6188 appears a clone of the last, but reads TWO bytes.
#
# we will read two bytes with a custom timeout to not penalize the
# users for this.
#
# we just check for a response and last byte being a ACK, that is
# the common stone for all radios (3 so far)
ack = _rawrecv(radio, 2)

# checking
if len(ack) == 0 or ack[-1:] != ACK_CMD:
raise errors.RadioError("Radio didn't ACK the upload")

# restore the default serial timeout
radio.pipe.timeout = STIMEOUT

# DEBUG
LOG.info("Positive ident, this is a %s %s" % (radio.VENDOR, radio.MODEL))

return True


def _download(radio):
"""Get the memory map"""

# UI progress
status = chirp_common.Status()

# put radio in program mode and identify it
_do_ident(radio, status)

# the models that doesn't have the extra ID have to make a dummy read here
if radio._id2 is False:
_send(radio, _make_frame("S", 0, BLOCK_SIZE))
discard = _rawrecv(radio, BLOCK_SIZE + 5)

if debug is True:
LOG.info("Dummy first block read done, got this:\n\n %s",
util.hexprint(discard))

# reset the progress bar in the UI
status.max = MEM_SIZE / BLOCK_SIZE
status.msg = "Cloning from radio..."
status.cur = 0
radio.status_fn(status)

# cleaning the serial buffer
_clean_buffer(radio)

data = ""
for addr in range(0, MEM_SIZE, BLOCK_SIZE):
# sending the read request
_send(radio, _make_frame("S", addr, BLOCK_SIZE))

# read
d = _recv(radio, addr)

# aggregate the data
data += d

# UI Update
status.cur = addr / BLOCK_SIZE
status.msg = "Cloning from radio..."
radio.status_fn(status)

return data


def _upload(radio):
"""Upload procedure"""

# The UPLOAD mem is restricted to lower than 0x3100,
# so we will overide that here localy
MEM_SIZE = radio.UPLOAD_MEM_SIZE

# UI progress
status = chirp_common.Status()

# put radio in program mode and identify it
_do_ident(radio, status, True)

# get the data to upload to radio
data = radio.get_mmap()

# Reset the UI progress
status.max = MEM_SIZE / TX_BLOCK_SIZE
status.cur = 0
status.msg = "Cloning to radio..."
radio.status_fn(status)

# the radios that doesn't have the extra ID 'may' do a dummy write, I found
# that leveraging the bad ACK and NOT doing the dummy write is ok, as the
# dummy write is accepted (it actually writes to the mem!) by the radio.

# cleaning the serial buffer
_clean_buffer(radio)

# the fun start here
for addr in range(0, MEM_SIZE, TX_BLOCK_SIZE):
# getting the block of data to send
d = data[addr:addr + TX_BLOCK_SIZE]

# build the frame to send
frame = _make_frame("X", addr, TX_BLOCK_SIZE, d)

# first block must not send the ACK at the beginning for the
# ones that has the extra id, since this have to do a extra step
if addr == 0 and radio._id2 is not False:
frame = frame[1:]

# send the frame
_send(radio, frame)

# receiving the response
ack = _rawrecv(radio, 1)

# basic check
if len(ack) != 1:
raise errors.RadioError("No ACK when writing block 0x%04x" % addr)

if ack not in "\x06\x05":
raise errors.RadioError("Bad ACK writing block 0x%04x:" % addr)

# UI Update
status.cur = addr / TX_BLOCK_SIZE
status.msg = "Cloning to radio..."
radio.status_fn(status)


def model_match(cls, data):
"""Match the opened/downloaded image to the correct version"""
rid = data[0x3f70:0x3f76]

if rid in cls._fileid:
return True

return False


def _decode_ranges(low, high):
"""Unpack the data in the ranges zones in the memmap and return
a tuple with the integer corresponding to the Mhz it means"""
ilow = int(low[0]) * 100 + int(low[1]) * 10 + int(low[2])
ihigh = int(high[0]) * 100 + int(high[1]) * 10 + int(high[2])
ilow *= 1000000
ihigh *= 1000000

return (ilow, ihigh)


def _split(rf, f1, f2):
"""Returns False if the two freqs are in the same band (no split)
or True otherwise"""

# determine if the two freqs are in the same band
for low, high in rf.valid_bands:
if f1 >= low and f1 <= high and \
f2 >= low and f2 <= high:
# if the two freqs are on the same Band this is not a split
return False

# if you get here is because the freq pairs are split
return True


class BTechMobileCommon(chirp_common.CloneModeRadio,
chirp_common.ExperimentalRadio):
"""BTECH's UV-5001 and alike radios"""
VENDOR = "BTECH"
MODEL = ""
IDENT = ""
BANDS = 2
COLOR_LCD = False
COLOR_LCD2 = False
COLOR_LCD3 = False
NAME_LENGTH = 6
UPLOAD_MEM_SIZE = 0X3100
_power_levels = [chirp_common.PowerLevel("High", watts=25),
chirp_common.PowerLevel("Low", watts=10)]
_vhf_range = (130000000, 180000000)
_220_range = (200000000, 271000000)
_uhf_range = (400000000, 521000000)
_350_range = (350000000, 391000000)
_upper = 199
_magic = MSTRING
_fileid = None
_id2 = False
btech3 = False
_gmrs = False

@classmethod
def get_prompts(cls):
rp = chirp_common.RadioPrompts()
rp.experimental = \
('This driver is experimental.\n'
'\n'
'Please keep a copy of your memories with the original software '
'if you treasure them, this driver is new and may contain'
' bugs.\n'
'\n'
)
rp.pre_download = _(dedent("""\
Follow these instructions to download your info:

1 - Turn off your radio
2 - Connect your interface cable
3 - Turn on your radio
4 - Do the download of your radio data

"""))
rp.pre_upload = _(dedent("""\
Follow these instructions to upload your info:

1 - Turn off your radio
2 - Connect your interface cable
3 - Turn on your radio
4 - Do the upload of your radio data

"""))
return rp

def get_features(self):
"""Get the radio's features"""

# we will use the following var as global
global POWER_LEVELS

rf = chirp_common.RadioFeatures()
rf.has_settings = True
rf.has_bank = False
rf.has_tuning_step = False
rf.can_odd_split = True
rf.has_name = True
rf.has_offset = True
rf.has_mode = True
rf.has_dtcs = True
rf.has_rx_dtcs = True
rf.has_dtcs_polarity = True
rf.has_ctone = True
rf.has_cross = True
rf.valid_modes = MODES
rf.valid_characters = VALID_CHARS
rf.valid_name_length = self.NAME_LENGTH
rf.valid_duplexes = ["", "-", "+", "split", "off"]
rf.valid_tmodes = ['', 'Tone', 'TSQL', 'DTCS', 'Cross']
rf.valid_cross_modes = [
"Tone->Tone",
"DTCS->",
"->DTCS",
"Tone->DTCS",
"DTCS->Tone",
"->Tone",
"DTCS->DTCS"]
rf.valid_skips = SKIP_VALUES
rf.valid_dtcs_codes = DTCS
rf.valid_tuning_steps = STEPS
rf.memory_bounds = (0, self._upper)

# power levels
POWER_LEVELS = self._power_levels
rf.valid_power_levels = POWER_LEVELS

# normal dual bands
rf.valid_bands = [self._vhf_range, self._uhf_range]

# 220 band
if self.BANDS == 3 or self.BANDS == 4:
rf.valid_bands.append(self._220_range)

# 350 band
if self.BANDS == 4:
rf.valid_bands.append(self._350_range)

return rf

def validate_memory(self, mem):
msgs = chirp_common.CloneModeRadio.validate_memory(self, mem)

_msg_duplex1 = 'Memory location only supports "Low"'
_msg_duplex2 = 'Memory location only supports "off"'
_msg_duplex3 = 'Memory location only supports "(None)", "+" or "off"'

if self._gmrs:
if mem.number < 1 or mem.number > 30:
if float(mem.freq) / 1000000 in GMRS_FREQS1:
if mem.duplex not in ['', 'off']:
# warn user wrong Duplex
msgs.append(chirp_common.ValidationError(_msg_duplex2))
if mem.power != self._power_levels[2]:
# warn user wrong Duplex
msgs.append(chirp_common.ValidationError(_msg_duplex1))

if float(mem.freq) / 1000000 in GMRS_FREQS2:
if mem.duplex not in ['off', ]:
# warn user wrong Duplex
msgs.append(chirp_common.ValidationError(_msg_duplex2))

if float(mem.freq) / 1000000 in GMRS_FREQS3:
if mem.duplex not in ['', '+', 'off']:
# warn user wrong Duplex
msgs.append(chirp_common.ValidationError(_msg_duplex3))

return msgs

def sync_in(self):
"""Download from radio"""
data = _download(self)
self._mmap = memmap.MemoryMap(data)
self.process_mmap()

def sync_out(self):
"""Upload to radio"""
try:
_upload(self)
except errors.RadioError:
raise
except Exception, e:
raise errors.RadioError("Error: %s" % e)

def get_raw_memory(self, number):
return repr(self._memobj.memory[number])

def _decode_tone(self, val):
"""Parse the tone data to decode from mem, it returns:
Mode (''|DTCS|Tone), Value (None|###), Polarity (None,N,R)"""
pol = None

if val in [0, 65535]:
return '', None, None
elif val > 0x0258:
a = val / 10.0
return 'Tone', a, pol
else:
if val > 0x69:
index = val - 0x6A
pol = "R"
else:
index = val - 1
pol = "N"

tone = DTCS[index]
return 'DTCS', tone, pol

def _encode_tone(self, memval, mode, val, pol):
"""Parse the tone data to encode from UI to mem"""
if mode == '' or mode is None:
memval.set_raw("\x00\x00")
elif mode == 'Tone':
memval.set_value(val * 10)
elif mode == 'DTCS':
# detect the index in the DTCS list
try:
index = DTCS.index(val)
if pol == "N":
index += 1
else:
index += 0x6A
memval.set_value(index)
except:
msg = "Digital Tone '%d' is not supported" % value
LOG.error(msg)
raise errors.RadioError(msg)
else:
msg = "Internal error: invalid mode '%s'" % mode
LOG.error(msg)
raise errors.InvalidDataError(msg)

def get_memory(self, number):
"""Get the mem representation from the radio image"""
_mem = self._memobj.memory[number]
_names = self._memobj.names[number]

# Create a high-level memory object to return to the UI
mem = chirp_common.Memory()

# Memory number
mem.number = number

if _mem.get_raw()[0] == "\xFF":
mem.empty = True
return mem

# Freq and offset
mem.freq = int(_mem.rxfreq) * 10
# tx freq can be blank
if _mem.get_raw()[4] == "\xFF":
# TX freq not set
mem.offset = 0
mem.duplex = "off"
else:
# TX freq set
offset = (int(_mem.txfreq) * 10) - mem.freq
if offset != 0:
if _split(self.get_features(), mem.freq, int(
_mem.txfreq) * 10):
mem.duplex = "split"
mem.offset = int(_mem.txfreq) * 10
elif offset < 0:
mem.offset = abs(offset)
mem.duplex = "-"
elif offset > 0:
mem.offset = offset
mem.duplex = "+"
else:
mem.offset = 0

# name TAG of the channel
mem.name = str(_names.name).rstrip("\xFF").replace("\xFF", " ")

# power
mem.power = POWER_LEVELS[int(_mem.power)]

# wide/narrow
mem.mode = MODES[int(_mem.wide)]

# skip
mem.skip = SKIP_VALUES[_mem.add]

# tone data
rxtone = txtone = None
txtone = self._decode_tone(_mem.txtone)
rxtone = self._decode_tone(_mem.rxtone)
chirp_common.split_tone_decode(mem, txtone, rxtone)

# Extra
mem.extra = RadioSettingGroup("extra", "Extra")

if not self.COLOR_LCD or \
(self.COLOR_LCD and not self.VENDOR == "BTECH"):
scramble = RadioSetting("scramble", "Scramble",
RadioSettingValueBoolean(bool(
_mem.scramble)))
mem.extra.append(scramble)

bcl = RadioSetting("bcl", "Busy channel lockout",
RadioSettingValueBoolean(bool(_mem.bcl)))
mem.extra.append(bcl)

pttid = RadioSetting("pttid", "PTT ID",
RadioSettingValueList(PTTID_LIST,
PTTID_LIST[_mem.pttid]))
mem.extra.append(pttid)

# validating scode
scode = _mem.scode if _mem.scode != 15 else 0
pttidcode = RadioSetting("scode", "PTT ID signal code",
RadioSettingValueList(
PTTIDCODE_LIST,
PTTIDCODE_LIST[scode]))
mem.extra.append(pttidcode)

optsig = RadioSetting("optsig", "Optional signaling",
RadioSettingValueList(
OPTSIG_LIST,
OPTSIG_LIST[_mem.optsig]))
mem.extra.append(optsig)

spmute = RadioSetting("spmute", "Speaker mute",
RadioSettingValueList(
SPMUTE_LIST,
SPMUTE_LIST[_mem.spmute]))
mem.extra.append(spmute)

return mem

def set_memory(self, mem):
"""Set the memory data in the eeprom img from the UI"""
# get the eprom representation of this channel
_mem = self._memobj.memory[mem.number]
_names = self._memobj.names[mem.number]

mem_was_empty = False
# same method as used in get_memory for determining if mem is empty
# doing this BEFORE overwriting it with new values ...
if _mem.get_raw()[0] == "\xFF":
LOG.debug("This mem was empty before")
mem_was_empty = True

# if empty memmory
if mem.empty:
# the channel itself
_mem.set_raw("\xFF" * 16)
# the name tag
_names.set_raw("\xFF" * 16)
return

if mem_was_empty:
# Zero the whole memory if we're making it unempty for
# the first time
LOG.debug('Zeroing new memory')
_mem.set_raw('\x00' * 16)

if self._gmrs:
if mem.number >= 1 and mem.number <= 30:
GMRS_FREQ = int(GMRS_FREQS[mem.number - 1] * 1000000)
mem.freq = GMRS_FREQ
if mem.number <= 22:
mem.duplex = ''
mem.offset = 0
if mem.number <= 7:
mem.power = self._power_levels[2]
if mem.number >= 8 and mem.number <= 14:
mem.duplex = 'off'
mem.mode = "NFM"
mem.power = self._power_levels[2]
if mem.number > 22:
mem.duplex = '+'
mem.offset = 5000000
elif float(mem.freq) / 1000000 in GMRS_FREQS:
if float(mem.freq) / 1000000 in GMRS_FREQS1:
mem.duplex = ''
mem.offset = 0
mem.power = self._power_levels[2]
if float(mem.freq) / 1000000 in GMRS_FREQS2:
mem.duplex = 'off'
mem.offset = 0
mem.mode = "NFM"
mem.power = self._power_levels[2]
if float(mem.freq) / 1000000 in GMRS_FREQS3:
if mem.duplex == '+':
mem.offset = 5000000
else:
mem.offset = 0
else:
mem.duplex = 'off'
mem.offset = 0

# frequency
_mem.rxfreq = mem.freq / 10

# duplex
if mem.duplex == "+":
_mem.txfreq = (mem.freq + mem.offset) / 10
elif mem.duplex == "-":
_mem.txfreq = (mem.freq - mem.offset) / 10
elif mem.duplex == "off":
for i in _mem.txfreq:
i.set_raw("\xFF")
elif mem.duplex == "split":
_mem.txfreq = mem.offset / 10
else:
_mem.txfreq = mem.freq / 10

# tone data
((txmode, txtone, txpol), (rxmode, rxtone, rxpol)) = \
chirp_common.split_tone_encode(mem)
self._encode_tone(_mem.txtone, txmode, txtone, txpol)
self._encode_tone(_mem.rxtone, rxmode, rxtone, rxpol)

# name TAG of the channel
if len(mem.name) < self.NAME_LENGTH:
# we must pad to self.NAME_LENGTH chars, " " = "\xFF"
mem.name = str(mem.name).ljust(self.NAME_LENGTH, " ")
_names.name = str(mem.name).replace(" ", "\xFF")

# power, # default power level is high
_mem.power = 0 if mem.power is None else POWER_LEVELS.index(mem.power)

# wide/narrow
_mem.wide = MODES.index(mem.mode)

# scan add property
_mem.add = SKIP_VALUES.index(mem.skip)

# reseting unknowns, this have to be set by hand
_mem.unknown0 = 0
_mem.unknown1 = 0
_mem.unknown2 = 0
_mem.unknown3 = 0
_mem.unknown4 = 0
_mem.unknown5 = 0
_mem.unknown6 = 0

def _zero_settings():
_mem.spmute = 0
_mem.optsig = 0
_mem.scramble = 0
_mem.bcl = 0
_mem.pttid = 0
_mem.scode = 0

if self.COLOR_LCD and _mem.scramble:
LOG.info('Resetting scramble bit for BTECH COLOR_LCD variant')
_mem.scramble = 0

# extra settings
if len(mem.extra) > 0:
# there are setting, parse
LOG.debug("Extra-Setting supplied. Setting them.")
# Zero them all first so any not provided by model don't
# stay set
_zero_settings()
for setting in mem.extra:
setattr(_mem, setting.get_name(), setting.value)
else:
if mem.empty:
LOG.debug("New mem is empty.")
else:
LOG.debug("New mem is NOT empty")
# set extra-settings to default ONLY when apreviously empty or
# deleted memory was edited to prevent errors such as #4121
if mem_was_empty:
LOG.debug("old mem was empty. Setting default for extras.")
_zero_settings()

return mem

def get_settings(self):
"""Translate the bit in the mem_struct into settings in the UI"""
_mem = self._memobj
basic = RadioSettingGroup("basic", "Basic Settings")
advanced = RadioSettingGroup("advanced", "Advanced Settings")
other = RadioSettingGroup("other", "Other Settings")
work = RadioSettingGroup("work", "Work Mode Settings")
top = RadioSettings(basic, advanced, other, work)

# Basic
if self.COLOR_LCD:
tmr = RadioSetting("settings.tmr", "Transceiver multi-receive",
RadioSettingValueList(
self.LIST_TMR,
self.LIST_TMR[_mem.settings.tmr]))
basic.append(tmr)
else:
tdr = RadioSetting("settings.tdr", "Transceiver dual receive",
RadioSettingValueBoolean(_mem.settings.tdr))
basic.append(tdr)

sql = RadioSetting("settings.sql", "Squelch level",
RadioSettingValueInteger(0, 9, _mem.settings.sql))
basic.append(sql)

if self.MODEL == "GMRS-50X1":
autolk = RadioSetting("settings.autolk", "Auto keylock",
RadioSettingValueBoolean(
_mem.settings.autolk))
basic.append(autolk)

if self.MODEL == "DB25-G":
rs = RadioSettingValueInteger(0, 127, _mem.settings.mgain2)
mgain2 = RadioSetting("settings.mgain2", "Mic gain", rs)
basic.append(mgain2)

tot = RadioSetting("settings.tot", "Time out timer",
RadioSettingValueList(
LIST_TOT,
LIST_TOT[_mem.settings.tot]))
basic.append(tot)

if self.MODEL == "KT-8R":
save = RadioSetting("settings.save", "Battery Save",
RadioSettingValueBoolean(
_mem.settings.save))
basic.append(save)

if not self.MODEL == "KT-8R":
if self.VENDOR == "BTECH" or self.COLOR_LCD:
apo = RadioSetting("settings.apo", "Auto power off timer",
RadioSettingValueList(
LIST_APO,
LIST_APO[_mem.settings.apo]))
basic.append(apo)
else:
toa = RadioSetting("settings.apo", "Time out alert timer",
RadioSettingValueList(
LIST_OFF1TO10,
LIST_OFF1TO10[_mem.settings.apo]))
basic.append(toa)

abr = RadioSetting("settings.abr", "Backlight timer",
RadioSettingValueList(
LIST_OFF1TO50,
LIST_OFF1TO50[_mem.settings.abr]))
basic.append(abr)

beep = RadioSetting("settings.beep", "Key beep",
RadioSettingValueBoolean(_mem.settings.beep))
basic.append(beep)

if self.MODEL == "KT-8R":
dsub = RadioSetting("settings.dsub", "CTCSS/DCS code display",
RadioSettingValueBoolean(
_mem.settings.dsub))
basic.append(dsub)

if self.MODEL == "KT-8R":
dtmfst = RadioSetting("settings.dtmfst", "DTMF side tone",
RadioSettingValueBoolean(
_mem.settings.dtmfst))
basic.append(dtmfst)
else:
dtmfst = RadioSetting("settings.dtmfst", "DTMF side tone",
RadioSettingValueList(
LIST_DTMFST,
LIST_DTMFST[_mem.settings.dtmfst]))
basic.append(dtmfst)

if not self.COLOR_LCD:
prisc = RadioSetting("settings.prisc", "Priority scan",
RadioSettingValueBoolean(
_mem.settings.prisc))
basic.append(prisc)

prich = RadioSetting("settings.prich", "Priority channel",
RadioSettingValueInteger(0, self._upper,
_mem.settings.prich))
basic.append(prich)

screv = RadioSetting("settings.screv", "Scan resume method",
RadioSettingValueList(
LIST_SCREV,
LIST_SCREV[_mem.settings.screv]))
basic.append(screv)

pttlt = RadioSetting("settings.pttlt", "PTT transmit delay",
RadioSettingValueInteger(0, 30,
_mem.settings.pttlt))
basic.append(pttlt)

if self.VENDOR == "BTECH" and self.COLOR_LCD:
emctp = RadioSetting("settings.emctp", "Alarm mode",
RadioSettingValueList(
LIST_EMCTPX,
LIST_EMCTPX[_mem.settings.emctp]))
basic.append(emctp)
else:
emctp = RadioSetting("settings.emctp", "Alarm mode",
RadioSettingValueList(
LIST_EMCTP,
LIST_EMCTP[_mem.settings.emctp]))
basic.append(emctp)

emcch = RadioSetting("settings.emcch", "Alarm channel",
RadioSettingValueInteger(0, self._upper,
_mem.settings.emcch))
basic.append(emcch)

if self.COLOR_LCD:
if _mem.settings.sigbp > 0x01:
val = 0x00
else:
val = _mem.settings.sigbp
sigbp = RadioSetting("settings.sigbp", "Signal beep",
RadioSettingValueBoolean(val))
basic.append(sigbp)
else:
ringt = RadioSetting("settings.ringt", "Ring time",
RadioSettingValueList(
LIST_OFF1TO9,
LIST_OFF1TO9[_mem.settings.ringt]))
basic.append(ringt)

camdf = RadioSetting("settings.camdf", "Display mode A",
RadioSettingValueList(
LIST_MDF,
LIST_MDF[_mem.settings.camdf]))
basic.append(camdf)

cbmdf = RadioSetting("settings.cbmdf", "Display mode B",
RadioSettingValueList(
LIST_MDF,
LIST_MDF[_mem.settings.cbmdf]))
basic.append(cbmdf)

if self.COLOR_LCD:
ccmdf = RadioSetting("settings.ccmdf", "Display mode C",
RadioSettingValueList(
LIST_MDF,
LIST_MDF[_mem.settings.ccmdf]))
basic.append(ccmdf)

cdmdf = RadioSetting("settings.cdmdf", "Display mode D",
RadioSettingValueList(
LIST_MDF,
LIST_MDF[_mem.settings.cdmdf]))
basic.append(cdmdf)

langua = RadioSetting("settings.langua", "Language",
RadioSettingValueList(
LIST_LANGUA,
LIST_LANGUA[_mem.settings.langua]))
basic.append(langua)

if self.MODEL == "KT-8R":
voice = RadioSetting("settings.voice", "Voice prompt",
RadioSettingValueList(
LIST_VOICE,
LIST_VOICE[_mem.settings.voice]))
basic.append(voice)

vox = RadioSetting("settings.vox", "VOX",
RadioSettingValueList(
LIST_VOX,
LIST_VOX[_mem.settings.vox]))
basic.append(vox)

voxt = RadioSetting("settings.voxt", "VOX delay time",
RadioSettingValueList(
LIST_VOXT,
LIST_VOXT[_mem.settings.voxt]))
basic.append(voxt)

if self.VENDOR == "BTECH":
if self.COLOR_LCD:
sync = RadioSetting("settings.sync", "Channel display sync",
RadioSettingValueList(
LIST_SYNC,
LIST_SYNC[_mem.settings.sync]))
basic.append(sync)
else:
sync = RadioSetting("settings.sync", "A/B channel sync",
RadioSettingValueBoolean(
_mem.settings.sync))
basic.append(sync)
else:
autolk = RadioSetting("settings.sync", "Auto keylock",
RadioSettingValueBoolean(
_mem.settings.sync))
basic.append(autolk)

if not self.COLOR_LCD:
ponmsg = RadioSetting("settings.ponmsg", "Power-on message",
RadioSettingValueList(
LIST_PONMSG,
LIST_PONMSG[_mem.settings.ponmsg]))
basic.append(ponmsg)

if self.COLOR_LCD and not (self.COLOR_LCD2 or self.COLOR_LCD3):
mainfc = RadioSetting("settings.mainfc",
"Main LCD foreground color",
RadioSettingValueList(
LIST_COLOR9,
LIST_COLOR9[_mem.settings.mainfc]))
basic.append(mainfc)

mainbc = RadioSetting("settings.mainbc",
"Main LCD background color",
RadioSettingValueList(
LIST_COLOR9,
LIST_COLOR9[_mem.settings.mainbc]))
basic.append(mainbc)

menufc = RadioSetting("settings.menufc", "Menu foreground color",
RadioSettingValueList(
LIST_COLOR9,
LIST_COLOR9[_mem.settings.menufc]))
basic.append(menufc)

menubc = RadioSetting("settings.menubc", "Menu background color",
RadioSettingValueList(
LIST_COLOR9,
LIST_COLOR9[_mem.settings.menubc]))
basic.append(menubc)

stafc = RadioSetting("settings.stafc",
"Top status foreground color",
RadioSettingValueList(
LIST_COLOR9,
LIST_COLOR9[_mem.settings.stafc]))
basic.append(stafc)

stabc = RadioSetting("settings.stabc",
"Top status background color",
RadioSettingValueList(
LIST_COLOR9,
LIST_COLOR9[_mem.settings.stabc]))
basic.append(stabc)

sigfc = RadioSetting("settings.sigfc",
"Bottom status foreground color",
RadioSettingValueList(
LIST_COLOR9,
LIST_COLOR9[_mem.settings.sigfc]))
basic.append(sigfc)

sigbc = RadioSetting("settings.sigbc",
"Bottom status background color",
RadioSettingValueList(
LIST_COLOR9,
LIST_COLOR9[_mem.settings.sigbc]))
basic.append(sigbc)

rxfc = RadioSetting("settings.rxfc", "Receiving character color",
RadioSettingValueList(
LIST_COLOR9,
LIST_COLOR9[_mem.settings.rxfc]))
basic.append(rxfc)

txfc = RadioSetting("settings.txfc",
"Transmitting character color",
RadioSettingValueList(
LIST_COLOR9,
LIST_COLOR9[_mem.settings.txfc]))
basic.append(txfc)

txdisp = RadioSetting("settings.txdisp",
"Transmitting status display",
RadioSettingValueList(
LIST_TXDISP,
LIST_TXDISP[_mem.settings.txdisp]))
basic.append(txdisp)
elif self.COLOR_LCD2 or self.COLOR_LCD3:
stfc = RadioSetting("settings.stfc",
"ST-FC",
RadioSettingValueList(
LIST_COLOR8,
LIST_COLOR8[_mem.settings.stfc]))
basic.append(stfc)

mffc = RadioSetting("settings.mffc",
"MF-FC",
RadioSettingValueList(
LIST_COLOR8,
LIST_COLOR8[_mem.settings.mffc]))
basic.append(mffc)

sfafc = RadioSetting("settings.sfafc",
"SFA-FC",
RadioSettingValueList(
LIST_COLOR8,
LIST_COLOR8[_mem.settings.sfafc]))
basic.append(sfafc)

sfbfc = RadioSetting("settings.sfbfc",
"SFB-FC",
RadioSettingValueList(
LIST_COLOR8,
LIST_COLOR8[_mem.settings.sfbfc]))
basic.append(sfbfc)

sfcfc = RadioSetting("settings.sfcfc",
"SFC-FC",
RadioSettingValueList(
LIST_COLOR8,
LIST_COLOR8[_mem.settings.sfcfc]))
basic.append(sfcfc)

sfdfc = RadioSetting("settings.sfdfc",
"SFD-FC",
RadioSettingValueList(
LIST_COLOR8,
LIST_COLOR8[_mem.settings.sfdfc]))
basic.append(sfdfc)

subfc = RadioSetting("settings.subfc",
"SUB-FC",
RadioSettingValueList(
LIST_COLOR8,
LIST_COLOR8[_mem.settings.subfc]))
basic.append(subfc)

fmfc = RadioSetting("settings.fmfc",
"FM-FC",
RadioSettingValueList(
LIST_COLOR8,
LIST_COLOR8[_mem.settings.fmfc]))
basic.append(fmfc)

sigfc = RadioSetting("settings.sigfc",
"SIG-FC",
RadioSettingValueList(
LIST_COLOR8,
LIST_COLOR8[_mem.settings.sigfc]))
basic.append(sigfc)

if not self.MODEL == "KT-8R":
modfc = RadioSetting("settings.modfc",
"MOD-FC",
RadioSettingValueList(
LIST_COLOR8,
LIST_COLOR8[_mem.settings.modfc]))
basic.append(modfc)

menufc = RadioSetting("settings.menufc",
"MENUFC",
RadioSettingValueList(
LIST_COLOR8,
LIST_COLOR8[_mem.settings.menufc]))
basic.append(menufc)

txfc = RadioSetting("settings.txfc",
"TX-FC",
RadioSettingValueList(
LIST_COLOR8,
LIST_COLOR8[_mem.settings.txfc]))
basic.append(txfc)

if self.MODEL == "KT-8R":
rxfc = RadioSetting("settings.rxfc",
"RX-FC",
RadioSettingValueList(
LIST_COLOR8,
LIST_COLOR8[_mem.settings.rxfc]))
basic.append(rxfc)

if not self.MODEL == "KT-8R":
txdisp = RadioSetting("settings.txdisp",
"Transmitting status display",
RadioSettingValueList(
LIST_TXDISP,
LIST_TXDISP[_mem.settings.txdisp]))
basic.append(txdisp)
else:
wtled = RadioSetting("settings.wtled", "Standby backlight Color",
RadioSettingValueList(
LIST_COLOR4,
LIST_COLOR4[_mem.settings.wtled]))
basic.append(wtled)

rxled = RadioSetting("settings.rxled", "RX backlight Color",
RadioSettingValueList(
LIST_COLOR4,
LIST_COLOR4[_mem.settings.rxled]))
basic.append(rxled)

txled = RadioSetting("settings.txled", "TX backlight Color",
RadioSettingValueList(
LIST_COLOR4,
LIST_COLOR4[_mem.settings.txled]))
basic.append(txled)

anil = RadioSetting("settings.anil", "ANI length",
RadioSettingValueList(
LIST_ANIL,
LIST_ANIL[_mem.settings.anil]))
basic.append(anil)

reps = RadioSetting("settings.reps", "Relay signal (tone burst)",
RadioSettingValueList(
LIST_REPS,
LIST_REPS[_mem.settings.reps]))
basic.append(reps)

if not self.MODEL == "GMRS-50X1" and not self.MODEL == "KT-8R":
repm = RadioSetting("settings.repm", "Relay condition",
RadioSettingValueList(
LIST_REPM,
LIST_REPM[_mem.settings.repm]))
basic.append(repm)

if self.VENDOR == "BTECH" or self.COLOR_LCD:
if self.COLOR_LCD:
tmrmr = RadioSetting("settings.tmrmr", "TMR return time",
RadioSettingValueList(
LIST_OFF1TO50,
LIST_OFF1TO50[_mem.settings.tmrmr]))
basic.append(tmrmr)
else:
tdrab = RadioSetting("settings.tdrab", "TDR return time",
RadioSettingValueList(
LIST_OFF1TO50,
LIST_OFF1TO50[_mem.settings.tdrab]))
basic.append(tdrab)

ste = RadioSetting("settings.ste", "Squelch tail eliminate",
RadioSettingValueBoolean(_mem.settings.ste))
basic.append(ste)

rpste = RadioSetting("settings.rpste", "Repeater STE",
RadioSettingValueList(
LIST_OFF1TO9,
LIST_OFF1TO9[_mem.settings.rpste]))
basic.append(rpste)

rptdl = RadioSetting("settings.rptdl", "Repeater STE delay",
RadioSettingValueList(
LIST_RPTDL,
LIST_RPTDL[_mem.settings.rptdl]))
basic.append(rptdl)

if self.MODEL == "DB25-G":
mgain = RadioSetting("settings.mgain", "Auto power-on",
RadioSettingValueBoolean(_mem.settings.mgain))
basic.append(mgain)

if str(_mem.fingerprint.fp) in BTECH3:
mgain = RadioSetting("settings.mgain", "Mic gain",
RadioSettingValueInteger(0, 120,
_mem.settings.mgain))
basic.append(mgain)

if str(_mem.fingerprint.fp) in BTECH3 or self.COLOR_LCD:
dtmfg = RadioSetting("settings.dtmfg", "DTMF gain",
RadioSettingValueInteger(0, 60,
_mem.settings.dtmfg))
basic.append(dtmfg)

if self.VENDOR == "BTECH" and self.COLOR_LCD:
mgain = RadioSetting("settings.mgain", "Mic gain",
RadioSettingValueInteger(0, 120,
_mem.settings.mgain))
basic.append(mgain)

skiptx = RadioSetting("settings.skiptx", "Skip TX",
RadioSettingValueList(
LIST_SKIPTX,
LIST_SKIPTX[_mem.settings.skiptx]))
basic.append(skiptx)

scmode = RadioSetting("settings.scmode", "Scan mode",
RadioSettingValueList(
LIST_SCMODE,
LIST_SCMODE[_mem.settings.scmode]))
basic.append(scmode)

if self.MODEL == "KT-8R":
tmrtx = RadioSetting("settings.tmrtx", "TX in multi-standby",
RadioSettingValueList(
LIST_TMRTX,
LIST_TMRTX[_mem.settings.tmrtx]))
basic.append(tmrtx)

# Advanced
def _filter(name):
filtered = ""
for char in str(name):
if char in VALID_CHARS:
filtered += char
else:
filtered += " "
return filtered

if self.COLOR_LCD and not (self.COLOR_LCD2 or self.COLOR_LCD3):
_msg = self._memobj.poweron_msg
line1 = RadioSetting("poweron_msg.line1",
"Power-on message line 1",
RadioSettingValueString(0, 8, _filter(
_msg.line1)))
advanced.append(line1)
line2 = RadioSetting("poweron_msg.line2",
"Power-on message line 2",
RadioSettingValueString(0, 8, _filter(
_msg.line2)))
advanced.append(line2)
line3 = RadioSetting("poweron_msg.line3",
"Power-on message line 3",
RadioSettingValueString(0, 8, _filter(
_msg.line3)))
advanced.append(line3)
line4 = RadioSetting("poweron_msg.line4",
"Power-on message line 4",
RadioSettingValueString(0, 8, _filter(
_msg.line4)))
advanced.append(line4)
line5 = RadioSetting("poweron_msg.line5",
"Power-on message line 5",
RadioSettingValueString(0, 8, _filter(
_msg.line5)))
advanced.append(line5)
line6 = RadioSetting("poweron_msg.line6",
"Power-on message line 6",
RadioSettingValueString(0, 8, _filter(
_msg.line6)))
advanced.append(line6)
line7 = RadioSetting("poweron_msg.line7",
"Power-on message line 7",
RadioSettingValueString(0, 8, _filter(
_msg.line7)))
advanced.append(line7)
line8 = RadioSetting("poweron_msg.line8", "Static message",
RadioSettingValueString(0, 8, _filter(
_msg.line8)))
advanced.append(line8)
elif self.COLOR_LCD2 or self.COLOR_LCD3:
_msg = self._memobj.static_msg
line = RadioSetting("static_msg.line", "Static message",
RadioSettingValueString(0, 16, _filter(
_msg.line)))
advanced.append(line)
else:
_msg = self._memobj.poweron_msg
line1 = RadioSetting("poweron_msg.line1",
"Power-on message line 1",
RadioSettingValueString(0, 6, _filter(
_msg.line1)))
advanced.append(line1)
line2 = RadioSetting("poweron_msg.line2",
"Power-on message line 2",
RadioSettingValueString(0, 6, _filter(
_msg.line2)))
advanced.append(line2)

if self.MODEL in ("UV-2501", "UV-5001"):
vfomren = RadioSetting("settings2.vfomren", "VFO/MR switching",
RadioSettingValueBoolean(
_mem.settings2.vfomren))
advanced.append(vfomren)

reseten = RadioSetting("settings2.reseten", "RESET",
RadioSettingValueBoolean(
_mem.settings2.reseten))
advanced.append(reseten)

menuen = RadioSetting("settings2.menuen", "Menu",
RadioSettingValueBoolean(
_mem.settings2.menuen))
advanced.append(menuen)

# Other
def convert_bytes_to_limit(bytes):
limit = ""
for byte in bytes:
if byte < 10:
limit += chr(byte + 0x30)
else:
break
return limit

if self.MODEL in ["UV-2501+220", "KT8900R"]:
_ranges = self._memobj.ranges220
ranges = "ranges220"
else:
_ranges = self._memobj.ranges
ranges = "ranges"

_limit = convert_bytes_to_limit(_ranges.vhf_low)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
vhf_low = RadioSetting("%s.vhf_low" % ranges, "VHF low", val)
other.append(vhf_low)

_limit = convert_bytes_to_limit(_ranges.vhf_high)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
vhf_high = RadioSetting("%s.vhf_high" % ranges, "VHF high", val)
other.append(vhf_high)

if self.BANDS == 3 or self.BANDS == 4:
_limit = convert_bytes_to_limit(_ranges.vhf2_low)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
vhf2_low = RadioSetting("%s.vhf2_low" % ranges, "VHF2 low", val)
other.append(vhf2_low)

_limit = convert_bytes_to_limit(_ranges.vhf2_high)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
vhf2_high = RadioSetting("%s.vhf2_high" % ranges, "VHF2 high", val)
other.append(vhf2_high)

_limit = convert_bytes_to_limit(_ranges.uhf_low)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
uhf_low = RadioSetting("%s.uhf_low" % ranges, "UHF low", val)
other.append(uhf_low)

_limit = convert_bytes_to_limit(_ranges.uhf_high)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
uhf_high = RadioSetting("%s.uhf_high" % ranges, "UHF high", val)
other.append(uhf_high)

if self.BANDS == 4:
_limit = convert_bytes_to_limit(_ranges.uhf2_low)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
uhf2_low = RadioSetting("%s.uhf2_low" % ranges, "UHF2 low", val)
other.append(uhf2_low)

_limit = convert_bytes_to_limit(_ranges.uhf2_high)
val = RadioSettingValueString(0, 3, _limit)
val.set_mutable(False)
uhf2_high = RadioSetting("%s.uhf2_high" % ranges, "UHF2 high", val)
other.append(uhf2_high)

val = RadioSettingValueString(0, 6, _filter(_mem.fingerprint.fp))
val.set_mutable(False)
fp = RadioSetting("fingerprint.fp", "Fingerprint", val)
other.append(fp)

# Work
if self.COLOR_LCD:
dispab = RadioSetting("settings2.dispab", "Display",
RadioSettingValueList(
LIST_ABCD,
LIST_ABCD[_mem.settings2.dispab]))
work.append(dispab)
else:
dispab = RadioSetting("settings2.dispab", "Display",
RadioSettingValueList(
LIST_AB,
LIST_AB[_mem.settings2.dispab]))
work.append(dispab)

if self.COLOR_LCD:
vfomra = RadioSetting("settings2.vfomra", "VFO/MR A mode",
RadioSettingValueList(
LIST_VFOMR,
LIST_VFOMR[_mem.settings2.vfomra]))
work.append(vfomra)

vfomrb = RadioSetting("settings2.vfomrb", "VFO/MR B mode",
RadioSettingValueList(
LIST_VFOMR,
LIST_VFOMR[_mem.settings2.vfomrb]))
work.append(vfomrb)

vfomrc = RadioSetting("settings2.vfomrc", "VFO/MR C mode",
RadioSettingValueList(
LIST_VFOMR,
LIST_VFOMR[_mem.settings2.vfomrc]))
work.append(vfomrc)

vfomrd = RadioSetting("settings2.vfomrd", "VFO/MR D mode",
RadioSettingValueList(
LIST_VFOMR,
LIST_VFOMR[_mem.settings2.vfomrd]))
work.append(vfomrd)
else:
vfomr = RadioSetting("settings2.vfomr", "VFO/MR mode",
RadioSettingValueList(
LIST_VFOMR,
LIST_VFOMR[_mem.settings2.vfomr]))
work.append(vfomr)

keylock = RadioSetting("settings2.keylock", "Keypad lock",
RadioSettingValueBoolean(
_mem.settings2.keylock))
work.append(keylock)

mrcha = RadioSetting("settings2.mrcha", "MR A channel",
RadioSettingValueInteger(0, self._upper,
_mem.settings2.mrcha))
work.append(mrcha)

mrchb = RadioSetting("settings2.mrchb", "MR B channel",
RadioSettingValueInteger(0, self._upper,
_mem.settings2.mrchb))
work.append(mrchb)

if self.COLOR_LCD:
mrchc = RadioSetting("settings2.mrchc", "MR C channel",
RadioSettingValueInteger(
0, self._upper, _mem.settings2.mrchc))
work.append(mrchc)

mrchd = RadioSetting("settings2.mrchd", "MR D channel",
RadioSettingValueInteger(
0, self._upper, _mem.settings2.mrchd))
work.append(mrchd)

def convert_bytes_to_freq(bytes):
real_freq = 0
for byte in bytes:
real_freq = (real_freq * 10) + byte
return chirp_common.format_freq(real_freq * 10)

def my_validate(value):
_vhf_lower = int(convert_bytes_to_limit(_ranges.vhf_low))
_vhf_upper = int(convert_bytes_to_limit(_ranges.vhf_high))
_uhf_lower = int(convert_bytes_to_limit(_ranges.uhf_low))
_uhf_upper = int(convert_bytes_to_limit(_ranges.uhf_high))
if self.BANDS == 3 or self.BANDS == 4:
_vhf2_lower = int(convert_bytes_to_limit(_ranges.vhf2_low))
_vhf2_upper = int(convert_bytes_to_limit(_ranges.vhf2_high))
if self.BANDS == 4:
_uhf2_lower = int(convert_bytes_to_limit(_ranges.uhf2_low))
_uhf2_upper = int(convert_bytes_to_limit(_ranges.uhf2_high))

value = chirp_common.parse_freq(value)
msg = ("Can't be less then %i.0000")
if value > 99000000 and value < _vhf_lower * 1000000:
raise InvalidValueError(msg % (_vhf_lower))
msg = ("Can't be betweeb %i.9975-%i.0000")
if self.BANDS == 2:
if (_vhf_upper + 1) * 1000000 <= value and \
value < _uhf_lower * 1000000:
raise InvalidValueError(msg % (_vhf_upper, _uhf_lower))
if self.BANDS == 3:
if (_vhf_upper + 1) * 1000000 <= value and \
value < _vhf2_lower * 1000000:
raise InvalidValueError(msg % (_vhf_upper, _vhf2_lower))
if (_vhf2_upper + 1) * 1000000 <= value and \
value < _uhf_lower * 1000000:
raise InvalidValueError(msg % (_vhf2_upper, _uhf_lower))
if self.BANDS == 4:
if (_vhf_upper + 1) * 1000000 <= value and \
value < _vhf2_lower * 1000000:
raise InvalidValueError(msg % (_vhf_upper, _vhf2_lower))
if (_vhf2_upper + 1) * 1000000 <= value and \
value < _uhf2_lower * 1000000:
raise InvalidValueError(msg % (_vhf2_upper, _uhf2_lower))
if (_uhf2_upper + 1) * 1000000 <= value and \
value < _uhf_lower * 1000000:
raise InvalidValueError(msg % (_uhf2_upper, _uhf_lower))
msg = ("Can't be greater then %i.9975")
if value > 99000000 and value >= _uhf_upper * 1000000:
raise InvalidValueError(msg % (_uhf_upper))
return chirp_common.format_freq(value)

def apply_freq(setting, obj):
value = chirp_common.parse_freq(str(setting.value)) / 10
for i in range(7, -1, -1):
obj.freq[i] = value % 10
value /= 10

val1a = RadioSettingValueString(0, 10, convert_bytes_to_freq(
_mem.vfo.a.freq))
val1a.set_validate_callback(my_validate)
vfoafreq = RadioSetting("vfo.a.freq", "VFO A frequency", val1a)
vfoafreq.set_apply_callback(apply_freq, _mem.vfo.a)
work.append(vfoafreq)

val1b = RadioSettingValueString(0, 10, convert_bytes_to_freq(
_mem.vfo.b.freq))
val1b.set_validate_callback(my_validate)
vfobfreq = RadioSetting("vfo.b.freq", "VFO B frequency", val1b)
vfobfreq.set_apply_callback(apply_freq, _mem.vfo.b)
work.append(vfobfreq)

if self.COLOR_LCD:
val1c = RadioSettingValueString(0, 10, convert_bytes_to_freq(
_mem.vfo.c.freq))
val1c.set_validate_callback(my_validate)
vfocfreq = RadioSetting("vfo.c.freq", "VFO C frequency", val1c)
vfocfreq.set_apply_callback(apply_freq, _mem.vfo.c)
work.append(vfocfreq)

val1d = RadioSettingValueString(0, 10, convert_bytes_to_freq(
_mem.vfo.d.freq))
val1d.set_validate_callback(my_validate)
vfodfreq = RadioSetting("vfo.d.freq", "VFO D frequency", val1d)
vfodfreq.set_apply_callback(apply_freq, _mem.vfo.d)
work.append(vfodfreq)

if not self.MODEL == "GMRS-50X1":
vfoashiftd = RadioSetting("vfo.a.shiftd", "VFO A shift",
RadioSettingValueList(
LIST_SHIFT,
LIST_SHIFT[_mem.vfo.a.shiftd]))
work.append(vfoashiftd)

vfobshiftd = RadioSetting("vfo.b.shiftd", "VFO B shift",
RadioSettingValueList(
LIST_SHIFT,
LIST_SHIFT[_mem.vfo.b.shiftd]))
work.append(vfobshiftd)

if self.COLOR_LCD:
vfocshiftd = RadioSetting("vfo.c.shiftd", "VFO C shift",
RadioSettingValueList(
LIST_SHIFT,
LIST_SHIFT[_mem.vfo.c.shiftd]))
work.append(vfocshiftd)

vfodshiftd = RadioSetting("vfo.d.shiftd", "VFO D shift",
RadioSettingValueList(
LIST_SHIFT,
LIST_SHIFT[_mem.vfo.d.shiftd]))
work.append(vfodshiftd)

def convert_bytes_to_offset(bytes):
real_offset = 0
for byte in bytes:
real_offset = (real_offset * 10) + byte
return chirp_common.format_freq(real_offset * 1000)

def apply_offset(setting, obj):
value = chirp_common.parse_freq(str(setting.value)) / 1000
for i in range(5, -1, -1):
obj.offset[i] = value % 10
value /= 10

if not self.MODEL == "GMRS-50X1":
if self.COLOR_LCD:
val1a = RadioSettingValueString(0, 10, convert_bytes_to_offset(
_mem.vfo.a.offset))
vfoaoffset = RadioSetting("vfo.a.offset",
"VFO A offset (0.000-999.999)",
val1a)
vfoaoffset.set_apply_callback(apply_offset, _mem.vfo.a)
work.append(vfoaoffset)

val1b = RadioSettingValueString(0, 10, convert_bytes_to_offset(
_mem.vfo.b.offset))
vfoboffset = RadioSetting("vfo.b.offset",
"VFO B offset (0.000-999.999)",
val1b)
vfoboffset.set_apply_callback(apply_offset, _mem.vfo.b)
work.append(vfoboffset)

val1c = RadioSettingValueString(0, 10, convert_bytes_to_offset(
_mem.vfo.c.offset))
vfocoffset = RadioSetting("vfo.c.offset",
"VFO C offset (0.000-999.999)",
val1c)
vfocoffset.set_apply_callback(apply_offset, _mem.vfo.c)
work.append(vfocoffset)

val1d = RadioSettingValueString(0, 10, convert_bytes_to_offset(
_mem.vfo.d.offset))
vfodoffset = RadioSetting("vfo.d.offset",
"VFO D offset (0.000-999.999)",
val1d)
vfodoffset.set_apply_callback(apply_offset, _mem.vfo.d)
work.append(vfodoffset)
else:
val1a = RadioSettingValueString(0, 10, convert_bytes_to_offset(
_mem.vfo.a.offset))
vfoaoffset = RadioSetting("vfo.a.offset",
"VFO A offset (0.000-99.999)", val1a)
vfoaoffset.set_apply_callback(apply_offset, _mem.vfo.a)
work.append(vfoaoffset)

val1b = RadioSettingValueString(0, 10, convert_bytes_to_offset(
_mem.vfo.b.offset))
vfoboffset = RadioSetting("vfo.b.offset",
"VFO B offset (0.000-99.999)", val1b)
vfoboffset.set_apply_callback(apply_offset, _mem.vfo.b)
work.append(vfoboffset)

if not self.MODEL == "GMRS-50X1":
vfoatxp = RadioSetting("vfo.a.power", "VFO A power",
RadioSettingValueList(
LIST_TXP,
LIST_TXP[_mem.vfo.a.power]))
work.append(vfoatxp)

vfobtxp = RadioSetting("vfo.b.power", "VFO B power",
RadioSettingValueList(
LIST_TXP,
LIST_TXP[_mem.vfo.b.power]))
work.append(vfobtxp)

if self.COLOR_LCD:
vfoctxp = RadioSetting("vfo.c.power", "VFO C power",
RadioSettingValueList(
LIST_TXP,
LIST_TXP[_mem.vfo.c.power]))
work.append(vfoctxp)

vfodtxp = RadioSetting("vfo.d.power", "VFO D power",
RadioSettingValueList(
LIST_TXP,
LIST_TXP[_mem.vfo.d.power]))
work.append(vfodtxp)

if not self.MODEL == "GMRS-50X1":
vfoawide = RadioSetting("vfo.a.wide", "VFO A bandwidth",
RadioSettingValueList(
LIST_WIDE,
LIST_WIDE[_mem.vfo.a.wide]))
work.append(vfoawide)

vfobwide = RadioSetting("vfo.b.wide", "VFO B bandwidth",
RadioSettingValueList(
LIST_WIDE,
LIST_WIDE[_mem.vfo.b.wide]))
work.append(vfobwide)

if self.COLOR_LCD:
vfocwide = RadioSetting("vfo.c.wide", "VFO C bandwidth",
RadioSettingValueList(
LIST_WIDE,
LIST_WIDE[_mem.vfo.c.wide]))
work.append(vfocwide)

vfodwide = RadioSetting("vfo.d.wide", "VFO D bandwidth",
RadioSettingValueList(
LIST_WIDE,
LIST_WIDE[_mem.vfo.d.wide]))
work.append(vfodwide)

vfoastep = RadioSetting("vfo.a.step", "VFO A step",
RadioSettingValueList(
LIST_STEP,
LIST_STEP[_mem.vfo.a.step]))
work.append(vfoastep)

vfobstep = RadioSetting("vfo.b.step", "VFO B step",
RadioSettingValueList(
LIST_STEP,
LIST_STEP[_mem.vfo.b.step]))
work.append(vfobstep)

if self.COLOR_LCD:
vfocstep = RadioSetting("vfo.c.step", "VFO C step",
RadioSettingValueList(
LIST_STEP,
LIST_STEP[_mem.vfo.c.step]))
work.append(vfocstep)

vfodstep = RadioSetting("vfo.d.step", "VFO D step",
RadioSettingValueList(
LIST_STEP,
LIST_STEP[_mem.vfo.d.step]))
work.append(vfodstep)

vfoaoptsig = RadioSetting("vfo.a.optsig", "VFO A optional signal",
RadioSettingValueList(
OPTSIG_LIST,
OPTSIG_LIST[_mem.vfo.a.optsig]))
work.append(vfoaoptsig)

vfoboptsig = RadioSetting("vfo.b.optsig", "VFO B optional signal",
RadioSettingValueList(
OPTSIG_LIST,
OPTSIG_LIST[_mem.vfo.b.optsig]))
work.append(vfoboptsig)

if self.COLOR_LCD:
vfocoptsig = RadioSetting("vfo.c.optsig", "VFO C optional signal",
RadioSettingValueList(
OPTSIG_LIST,
OPTSIG_LIST[_mem.vfo.c.optsig]))
work.append(vfocoptsig)

vfodoptsig = RadioSetting("vfo.d.optsig", "VFO D optional signal",
RadioSettingValueList(
OPTSIG_LIST,
OPTSIG_LIST[_mem.vfo.d.optsig]))
work.append(vfodoptsig)

vfoaspmute = RadioSetting("vfo.a.spmute", "VFO A speaker mute",
RadioSettingValueList(
SPMUTE_LIST,
SPMUTE_LIST[_mem.vfo.a.spmute]))
work.append(vfoaspmute)

vfobspmute = RadioSetting("vfo.b.spmute", "VFO B speaker mute",
RadioSettingValueList(
SPMUTE_LIST,
SPMUTE_LIST[_mem.vfo.b.spmute]))
work.append(vfobspmute)

if self.COLOR_LCD:
vfocspmute = RadioSetting("vfo.c.spmute", "VFO C speaker mute",
RadioSettingValueList(
SPMUTE_LIST,
SPMUTE_LIST[_mem.vfo.c.spmute]))
work.append(vfocspmute)

vfodspmute = RadioSetting("vfo.d.spmute", "VFO D speaker mute",
RadioSettingValueList(
SPMUTE_LIST,
SPMUTE_LIST[_mem.vfo.d.spmute]))
work.append(vfodspmute)

if not self.COLOR_LCD or \
(self.COLOR_LCD and not self.VENDOR == "BTECH"):
vfoascr = RadioSetting("vfo.a.scramble", "VFO A scramble",
RadioSettingValueBoolean(
_mem.vfo.a.scramble))
work.append(vfoascr)

vfobscr = RadioSetting("vfo.b.scramble", "VFO B scramble",
RadioSettingValueBoolean(
_mem.vfo.b.scramble))
work.append(vfobscr)

if self.COLOR_LCD and not self.VENDOR == "BTECH":
vfocscr = RadioSetting("vfo.c.scramble", "VFO C scramble",
RadioSettingValueBoolean(
_mem.vfo.c.scramble))
work.append(vfocscr)

vfodscr = RadioSetting("vfo.d.scramble", "VFO D scramble",
RadioSettingValueBoolean(
_mem.vfo.d.scramble))
work.append(vfodscr)

if not self.MODEL == "GMRS-50X1":
vfoascode = RadioSetting("vfo.a.scode", "VFO A PTT-ID",
RadioSettingValueList(
PTTIDCODE_LIST,
PTTIDCODE_LIST[_mem.vfo.a.scode]))
work.append(vfoascode)

vfobscode = RadioSetting("vfo.b.scode", "VFO B PTT-ID",
RadioSettingValueList(
PTTIDCODE_LIST,
PTTIDCODE_LIST[_mem.vfo.b.scode]))
work.append(vfobscode)

if self.COLOR_LCD:
vfocscode = RadioSetting("vfo.c.scode", "VFO C PTT-ID",
RadioSettingValueList(
PTTIDCODE_LIST,
PTTIDCODE_LIST[_mem.vfo.c.scode]))
work.append(vfocscode)

vfodscode = RadioSetting("vfo.d.scode", "VFO D PTT-ID",
RadioSettingValueList(
PTTIDCODE_LIST,
PTTIDCODE_LIST[_mem.vfo.d.scode]))
work.append(vfodscode)

if not self.MODEL == "GMRS-50X1":
pttid = RadioSetting("settings.pttid", "PTT ID",
RadioSettingValueList(
PTTID_LIST,
PTTID_LIST[_mem.settings.pttid]))
work.append(pttid)

if not self.COLOR_LCD:
# FM presets
fm_presets = RadioSettingGroup("fm_presets", "FM Presets")
top.append(fm_presets)

def fm_validate(value):
if value == 0:
return chirp_common.format_freq(value)
if not (87.5 <= value and value <= 108.0): # 87.5-108MHz
msg = ("FM-Preset-Frequency: " +
"Must be between 87.5 and 108 MHz")
raise InvalidValueError(msg)
return value

def apply_fm_preset_name(setting, obj):
valstring = str(setting.value)
for i in range(0, 6):
if valstring[i] in VALID_CHARS:
obj[i] = valstring[i]
else:
obj[i] = '0xff'

def apply_fm_freq(setting, obj):
value = chirp_common.parse_freq(str(setting.value)) / 10
for i in range(7, -1, -1):
obj.freq[i] = value % 10
value /= 10

_presets = self._memobj.fm_radio_preset
i = 1
for preset in _presets:
line = RadioSetting("fm_presets_" + str(i),
"Station name " + str(i),
RadioSettingValueString(0, 6, _filter(
preset.broadcast_station_name)))
line.set_apply_callback(apply_fm_preset_name,
preset.broadcast_station_name)

val = RadioSettingValueFloat(0, 108,
convert_bytes_to_freq(
preset.freq))
fmfreq = RadioSetting("fm_presets_" + str(i) + "_freq",
"Frequency " + str(i), val)
val.set_validate_callback(fm_validate)
fmfreq.set_apply_callback(apply_fm_freq, preset)
fm_presets.append(line)
fm_presets.append(fmfreq)

i = i + 1

# DTMF-Setting
dtmf_enc_settings = RadioSettingGroup("dtmf_enc_settings",
"DTMF Encoding Settings")
dtmf_dec_settings = RadioSettingGroup("dtmf_dec_settings",
"DTMF Decoding Settings")
top.append(dtmf_enc_settings)
top.append(dtmf_dec_settings)
txdisable = RadioSetting("dtmf_settings.txdisable",
"TX-Disable",
RadioSettingValueBoolean(
_mem.dtmf_settings.txdisable))
dtmf_enc_settings.append(txdisable)

rxdisable = RadioSetting("dtmf_settings.rxdisable",
"RX-Disable",
RadioSettingValueBoolean(
_mem.dtmf_settings.rxdisable))
dtmf_enc_settings.append(rxdisable)

if _mem.dtmf_settings.dtmfspeed_on > 0x0F:
val = 0x03
else:
val = _mem.dtmf_settings.dtmfspeed_on
dtmfspeed_on = RadioSetting(
"dtmf_settings.dtmfspeed_on",
"DTMF Speed (On Time)",
RadioSettingValueList(LIST_DTMF_SPEED,
LIST_DTMF_SPEED[
val]))
dtmf_enc_settings.append(dtmfspeed_on)

if _mem.dtmf_settings.dtmfspeed_off > 0x0F:
val = 0x03
else:
val = _mem.dtmf_settings.dtmfspeed_off
dtmfspeed_off = RadioSetting(
"dtmf_settings.dtmfspeed_off",
"DTMF Speed (Off Time)",
RadioSettingValueList(LIST_DTMF_SPEED,
LIST_DTMF_SPEED[
val]))
dtmf_enc_settings.append(dtmfspeed_off)

def memory2string(dmtf_mem):
dtmf_string = ""
for digit in dmtf_mem:
if digit != 255:
index = LIST_DTMF_VALUES.index(digit)
dtmf_string = dtmf_string + LIST_DTMF_DIGITS[index]
return dtmf_string

def apply_dmtf_frame(setting, obj):
LOG.debug("Setting DTMF-Code: " + str(setting.value))
val_string = str(setting.value)
for i in range(0, 16):
obj[i] = 255
i = 0
for current_char in val_string:
current_char = current_char.upper()
index = LIST_DTMF_DIGITS.index(current_char)
obj[i] = LIST_DTMF_VALUES[index]
i = i + 1

codes = self._memobj.dtmf_codes
i = 1
for dtmfcode in codes:
val = RadioSettingValueString(0, 16, memory2string(
dtmfcode.code),
False, CHARSET_DTMF_DIGITS)
line = RadioSetting("dtmf_code_" + str(i) + "_code",
"DMTF Code " + str(i), val)
line.set_apply_callback(apply_dmtf_frame, dtmfcode.code)
dtmf_enc_settings.append(line)
i = i + 1

line = RadioSetting("dtmf_settings.mastervice",
"Master and Vice ID",
RadioSettingValueBoolean(
_mem.dtmf_settings.mastervice))
dtmf_dec_settings.append(line)

val = RadioSettingValueString(0, 16, memory2string(
_mem.dtmf_settings.masterid),
False, CHARSET_DTMF_DIGITS)
line = RadioSetting("dtmf_settings.masterid",
"Master Control ID ", val)
line.set_apply_callback(apply_dmtf_frame,
_mem.dtmf_settings.masterid)
dtmf_dec_settings.append(line)

line = RadioSetting("dtmf_settings.minspection",
"Master Inspection",
RadioSettingValueBoolean(
_mem.dtmf_settings.minspection))
dtmf_dec_settings.append(line)

line = RadioSetting("dtmf_settings.mmonitor",
"Master Monitor",
RadioSettingValueBoolean(
_mem.dtmf_settings.mmonitor))
dtmf_dec_settings.append(line)

line = RadioSetting("dtmf_settings.mstun",
"Master Stun",
RadioSettingValueBoolean(
_mem.dtmf_settings.mstun))
dtmf_dec_settings.append(line)

line = RadioSetting("dtmf_settings.mkill",
"Master Kill",
RadioSettingValueBoolean(
_mem.dtmf_settings.mkill))
dtmf_dec_settings.append(line)

line = RadioSetting("dtmf_settings.mrevive",
"Master Revive",
RadioSettingValueBoolean(
_mem.dtmf_settings.mrevive))
dtmf_dec_settings.append(line)

val = RadioSettingValueString(0, 16, memory2string(
_mem.dtmf_settings.viceid),
False, CHARSET_DTMF_DIGITS)
line = RadioSetting("dtmf_settings.viceid",
"Vice Control ID ", val)
line.set_apply_callback(apply_dmtf_frame,
_mem.dtmf_settings.viceid)
dtmf_dec_settings.append(line)

line = RadioSetting("dtmf_settings.vinspection",
"Vice Inspection",
RadioSettingValueBoolean(
_mem.dtmf_settings.vinspection))
dtmf_dec_settings.append(line)

line = RadioSetting("dtmf_settings.vmonitor",
"Vice Monitor",
RadioSettingValueBoolean(
_mem.dtmf_settings.vmonitor))
dtmf_dec_settings.append(line)

line = RadioSetting("dtmf_settings.vstun",
"Vice Stun",
RadioSettingValueBoolean(
_mem.dtmf_settings.vstun))
dtmf_dec_settings.append(line)

line = RadioSetting("dtmf_settings.vkill",
"Vice Kill",
RadioSettingValueBoolean(
_mem.dtmf_settings.vkill))
dtmf_dec_settings.append(line)

line = RadioSetting("dtmf_settings.vrevive",
"Vice Revive",
RadioSettingValueBoolean(
_mem.dtmf_settings.vrevive))
dtmf_dec_settings.append(line)

val = RadioSettingValueString(0, 16, memory2string(
_mem.dtmf_settings.inspection),
False, CHARSET_DTMF_DIGITS)
line = RadioSetting("dtmf_settings.inspection",
"Inspection", val)
line.set_apply_callback(apply_dmtf_frame,
_mem.dtmf_settings.inspection)
dtmf_dec_settings.append(line)

val = RadioSettingValueString(0, 16, memory2string(
_mem.dtmf_settings.alarmcode),
False, CHARSET_DTMF_DIGITS)
line = RadioSetting("dtmf_settings.alarmcode",
"Alarm", val)
line.set_apply_callback(apply_dmtf_frame,
_mem.dtmf_settings.alarmcode)
dtmf_dec_settings.append(line)

val = RadioSettingValueString(0, 16, memory2string(
_mem.dtmf_settings.kill),
False, CHARSET_DTMF_DIGITS)
line = RadioSetting("dtmf_settings.kill",
"Kill", val)
line.set_apply_callback(apply_dmtf_frame,
_mem.dtmf_settings.kill)
dtmf_dec_settings.append(line)

val = RadioSettingValueString(0, 16, memory2string(
_mem.dtmf_settings.monitor),
False, CHARSET_DTMF_DIGITS)
line = RadioSetting("dtmf_settings.monitor",
"Monitor", val)
line.set_apply_callback(apply_dmtf_frame,
_mem.dtmf_settings.monitor)
dtmf_dec_settings.append(line)

val = RadioSettingValueString(0, 16, memory2string(
_mem.dtmf_settings.stun),
False, CHARSET_DTMF_DIGITS)
line = RadioSetting("dtmf_settings.stun",
"Stun", val)
line.set_apply_callback(apply_dmtf_frame,
_mem.dtmf_settings.stun)
dtmf_dec_settings.append(line)

val = RadioSettingValueString(0, 16, memory2string(
_mem.dtmf_settings.revive),
False, CHARSET_DTMF_DIGITS)
line = RadioSetting("dtmf_settings.revive",
"Revive", val)
line.set_apply_callback(apply_dmtf_frame,
_mem.dtmf_settings.revive)
dtmf_dec_settings.append(line)

def apply_dmtf_listvalue(setting, obj):
LOG.debug("Setting value: " + str(setting.value) + " from list")
val = str(setting.value)
index = LIST_DTMF_SPECIAL_DIGITS.index(val)
val = LIST_DTMF_SPECIAL_VALUES[index]
obj.set_value(val)

if _mem.dtmf_settings.groupcode not in LIST_DTMF_SPECIAL_VALUES:
val = 0x0B
else:
val = _mem.dtmf_settings.groupcode
idx = LIST_DTMF_SPECIAL_VALUES.index(val)
line = RadioSetting(
"dtmf_settings.groupcode",
"Group Code",
RadioSettingValueList(LIST_DTMF_SPECIAL_DIGITS,
LIST_DTMF_SPECIAL_DIGITS[idx]))
line.set_apply_callback(apply_dmtf_listvalue,
_mem.dtmf_settings.groupcode)
dtmf_dec_settings.append(line)

if _mem.dtmf_settings.spacecode not in LIST_DTMF_SPECIAL_VALUES:
val = 0x0C
else:
val = _mem.dtmf_settings.spacecode
idx = LIST_DTMF_SPECIAL_VALUES.index(val)
line = RadioSetting(
"dtmf_settings.spacecode",
"Space Code",
RadioSettingValueList(LIST_DTMF_SPECIAL_DIGITS,
LIST_DTMF_SPECIAL_DIGITS[idx]))
line.set_apply_callback(apply_dmtf_listvalue,
_mem.dtmf_settings.spacecode)
dtmf_dec_settings.append(line)

if self.COLOR_LCD:
if _mem.dtmf_settings.resettime > 0x63:
val = 0x4F
else:
val = _mem.dtmf_settings.resettime
line = RadioSetting(
"dtmf_settings.resettime",
"Reset time",
RadioSettingValueList(LIST_5TONE_RESET_COLOR,
LIST_5TONE_RESET_COLOR[
val]))
dtmf_dec_settings.append(line)
else:
line = RadioSetting(
"dtmf_settings.resettime",
"Reset time",
RadioSettingValueList(LIST_5TONE_RESET,
LIST_5TONE_RESET[
_mem.dtmf_settings.resettime]))
dtmf_dec_settings.append(line)

if _mem.dtmf_settings.delayproctime > 0x27:
val = 0x04
else:
val = _mem.dtmf_settings.delayproctime
line = RadioSetting(
"dtmf_settings.delayproctime",
"Delay processing time",
RadioSettingValueList(LIST_DTMF_DELAY,
LIST_DTMF_DELAY[
val]))
dtmf_dec_settings.append(line)

# 5 Tone Settings
stds_5tone = RadioSettingGroup("stds_5tone", "Standards")
codes_5tone = RadioSettingGroup("codes_5tone", "Codes")

group_5tone = RadioSettingGroup("group_5tone", "5 Tone Settings")
group_5tone.append(stds_5tone)
group_5tone.append(codes_5tone)

top.append(group_5tone)

def apply_list_value(setting, obj):
options = setting.value.get_options()
obj.set_value(options.index(str(setting.value)))

_5tone_standards = self._memobj._5tone_std_settings
i = 0
for standard in _5tone_standards:
std_5tone = RadioSettingGroup("std_5tone_" + str(i),
LIST_5TONE_STANDARDS[i])
stds_5tone.append(std_5tone)

period = standard.period
if period == 255:
LOG.debug("Period for " + LIST_5TONE_STANDARDS[i] +
" is not yet configured. Setting to 70ms.")
period = 5

if period <= len(LIST_5TONE_STANDARD_PERIODS):
line = RadioSetting(
"_5tone_std_settings_" + str(i) + "_period",
"Period (ms)", RadioSettingValueList
(LIST_5TONE_STANDARD_PERIODS,
LIST_5TONE_STANDARD_PERIODS[period]))
line.set_apply_callback(apply_list_value, standard.period)
std_5tone.append(line)
else:
LOG.debug("Invalid value for 5tone period! Disabling.")

group_tone = standard.group_tone
if group_tone == 255:
LOG.debug("Group-Tone for " + LIST_5TONE_STANDARDS[i] +
" is not yet configured. Setting to A.")
group_tone = 10

if group_tone <= len(LIST_5TONE_DIGITS):
line = RadioSetting(
"_5tone_std_settings_" + str(i) + "_grouptone",
"Group Tone",
RadioSettingValueList(LIST_5TONE_DIGITS,
LIST_5TONE_DIGITS[
group_tone]))
line.set_apply_callback(apply_list_value,
standard.group_tone)
std_5tone.append(line)
else:
LOG.debug("Invalid value for 5tone digit! Disabling.")

repeat_tone = standard.repeat_tone
if repeat_tone == 255:
LOG.debug("Repeat-Tone for " + LIST_5TONE_STANDARDS[i] +
" is not yet configured. Setting to E.")
repeat_tone = 14

if repeat_tone <= len(LIST_5TONE_DIGITS):
line = RadioSetting(
"_5tone_std_settings_" + str(i) + "_repttone",
"Repeat Tone",
RadioSettingValueList(LIST_5TONE_DIGITS,
LIST_5TONE_DIGITS[
repeat_tone]))
line.set_apply_callback(apply_list_value,
standard.repeat_tone)
std_5tone.append(line)
else:
LOG.debug("Invalid value for 5tone digit! Disabling.")
i = i + 1

def my_apply_5tonestdlist_value(setting, obj):
if LIST_5TONE_STANDARDS.index(str(setting.value)) == 15:
obj.set_value(0xFF)
else:
obj.set_value(LIST_5TONE_STANDARDS.
index(str(setting.value)))

def apply_5tone_frame(setting, obj):
LOG.debug("Setting 5 Tone: " + str(setting.value))
valstring = str(setting.value)
if len(valstring) == 0:
for i in range(0, 5):
obj[i] = 255
else:
validFrame = True
for i in range(0, 5):
currentChar = valstring[i].upper()
if currentChar in LIST_5TONE_DIGITS:
obj[i] = LIST_5TONE_DIGITS.index(currentChar)
else:
validFrame = False
LOG.debug("invalid char: " + str(currentChar))
if not validFrame:
LOG.debug("setting whole frame to FF")
for i in range(0, 5):
obj[i] = 255

def validate_5tone_frame(value):
if (len(str(value)) != 5) and (len(str(value)) != 0):
msg = ("5 Tone must have 5 digits or 0 digits")
raise InvalidValueError(msg)
for digit in str(value):
if digit.upper() not in LIST_5TONE_DIGITS:
msg = (str(digit) + " is not a valid digit for 5tones")
raise InvalidValueError(msg)
return value

def frame2string(frame):
frameString = ""
for digit in frame:
if digit != 255:
frameString = frameString + LIST_5TONE_DIGITS[digit]
return frameString

_5tone_codes = self._memobj._5tone_codes
i = 1
for code in _5tone_codes:
code_5tone = RadioSettingGroup("code_5tone_" + str(i),
"5 Tone code " + str(i))
codes_5tone.append(code_5tone)
if (code.standard == 255):
currentVal = 15
else:
currentVal = code.standard
line = RadioSetting("_5tone_code_" + str(i) + "_std",
" Standard",
RadioSettingValueList(LIST_5TONE_STANDARDS,
LIST_5TONE_STANDARDS[
currentVal]))
line.set_apply_callback(my_apply_5tonestdlist_value,
code.standard)
code_5tone.append(line)

val = RadioSettingValueString(0, 6,
frame2string(code.frame1), False)
line = RadioSetting("_5tone_code_" + str(i) + "_frame1",
" Frame 1", val)
val.set_validate_callback(validate_5tone_frame)
line.set_apply_callback(apply_5tone_frame, code.frame1)
code_5tone.append(line)

val = RadioSettingValueString(0, 6,
frame2string(code.frame2), False)
line = RadioSetting("_5tone_code_" + str(i) + "_frame2",
" Frame 2", val)
val.set_validate_callback(validate_5tone_frame)
line.set_apply_callback(apply_5tone_frame, code.frame2)
code_5tone.append(line)

val = RadioSettingValueString(0, 6,
frame2string(code.frame3), False)
line = RadioSetting("_5tone_code_" + str(i) + "_frame3",
" Frame 3", val)
val.set_validate_callback(validate_5tone_frame)
line.set_apply_callback(apply_5tone_frame, code.frame3)
code_5tone.append(line)
i = i + 1

_5_tone_decode1 = RadioSetting(
"_5tone_settings._5tone_decode_call_frame1",
"5 Tone decode call Frame 1",
RadioSettingValueBoolean(
_mem._5tone_settings._5tone_decode_call_frame1))
group_5tone.append(_5_tone_decode1)

_5_tone_decode2 = RadioSetting(
"_5tone_settings._5tone_decode_call_frame2",
"5 Tone decode call Frame 2",
RadioSettingValueBoolean(
_mem._5tone_settings._5tone_decode_call_frame2))
group_5tone.append(_5_tone_decode2)

_5_tone_decode3 = RadioSetting(
"_5tone_settings._5tone_decode_call_frame3",
"5 Tone decode call Frame 3",
RadioSettingValueBoolean(
_mem._5tone_settings._5tone_decode_call_frame3))
group_5tone.append(_5_tone_decode3)

_5_tone_decode_disp1 = RadioSetting(
"_5tone_settings._5tone_decode_disp_frame1",
"5 Tone decode disp Frame 1",
RadioSettingValueBoolean(
_mem._5tone_settings._5tone_decode_disp_frame1))
group_5tone.append(_5_tone_decode_disp1)

_5_tone_decode_disp2 = RadioSetting(
"_5tone_settings._5tone_decode_disp_frame2",
"5 Tone decode disp Frame 2",
RadioSettingValueBoolean(
_mem._5tone_settings._5tone_decode_disp_frame2))
group_5tone.append(_5_tone_decode_disp2)

_5_tone_decode_disp3 = RadioSetting(
"_5tone_settings._5tone_decode_disp_frame3",
"5 Tone decode disp Frame 3",
RadioSettingValueBoolean(
_mem._5tone_settings._5tone_decode_disp_frame3))
group_5tone.append(_5_tone_decode_disp3)

decode_standard = _mem._5tone_settings.decode_standard
if decode_standard == 255:
decode_standard = 0
if decode_standard <= len(LIST_5TONE_STANDARDS_without_none):
line = RadioSetting("_5tone_settings.decode_standard",
"5 Tone-decode Standard",
RadioSettingValueList(
LIST_5TONE_STANDARDS_without_none,
LIST_5TONE_STANDARDS_without_none[
decode_standard]))
group_5tone.append(line)
else:
LOG.debug("Invalid decode std...")

_5tone_delay1 = _mem._5tone_settings._5tone_delay1
if _5tone_delay1 == 255:
_5tone_delay1 = 20

if _5tone_delay1 <= len(LIST_5TONE_DELAY):
list = RadioSettingValueList(LIST_5TONE_DELAY,
LIST_5TONE_DELAY[
_5tone_delay1])
line = RadioSetting("_5tone_settings._5tone_delay1",
"5 Tone Delay Frame 1", list)
group_5tone.append(line)
else:
LOG.debug("Invalid value for 5tone delay (frame1) ! Disabling.")

_5tone_delay2 = _mem._5tone_settings._5tone_delay2
if _5tone_delay2 == 255:
_5tone_delay2 = 20
LOG.debug("5 Tone delay unconfigured! Resetting to 200ms.")

if _5tone_delay2 <= len(LIST_5TONE_DELAY):
list = RadioSettingValueList(LIST_5TONE_DELAY,
LIST_5TONE_DELAY[
_5tone_delay2])
line = RadioSetting("_5tone_settings._5tone_delay2",
"5 Tone Delay Frame 2", list)
group_5tone.append(line)
else:
LOG.debug("Invalid value for 5tone delay (frame2)! Disabling.")

_5tone_delay3 = _mem._5tone_settings._5tone_delay3
if _5tone_delay3 == 255:
_5tone_delay3 = 20
LOG.debug("5 Tone delay unconfigured! Resetting to 200ms.")

if _5tone_delay3 <= len(LIST_5TONE_DELAY):
list = RadioSettingValueList(LIST_5TONE_DELAY,
LIST_5TONE_DELAY[
_5tone_delay3])
line = RadioSetting("_5tone_settings._5tone_delay3",
"5 Tone Delay Frame 3", list)
group_5tone.append(line)
else:
LOG.debug("Invalid value for 5tone delay (frame3)! Disabling.")

ext_length = _mem._5tone_settings._5tone_first_digit_ext_length
if ext_length == 255:
ext_length = 0
LOG.debug("1st Tone ext lenght unconfigured! Resetting to 0")

if ext_length <= len(LIST_5TONE_DELAY):
list = RadioSettingValueList(
LIST_5TONE_DELAY,
LIST_5TONE_DELAY[
ext_length])
line = RadioSetting(
"_5tone_settings._5tone_first_digit_ext_length",
"First digit extend length", list)
group_5tone.append(line)
else:
LOG.debug("Invalid value for 5tone ext length! Disabling.")

decode_reset_time = _mem._5tone_settings.decode_reset_time
if decode_reset_time == 255:
decode_reset_time = 59
LOG.debug("Decode reset time unconfigured. resetting.")
if decode_reset_time <= len(LIST_5TONE_RESET):
list = RadioSettingValueList(
LIST_5TONE_RESET,
LIST_5TONE_RESET[
decode_reset_time])
line = RadioSetting("_5tone_settings.decode_reset_time",
"Decode reset time", list)
group_5tone.append(line)
else:
LOG.debug("Invalid value decode reset time! Disabling.")

# 2 Tone
encode_2tone = RadioSettingGroup("encode_2tone", "2 Tone Encode")
decode_2tone = RadioSettingGroup("decode_2tone", "2 Code Decode")

top.append(encode_2tone)
top.append(decode_2tone)

duration_1st_tone = self._memobj._2tone.duration_1st_tone
if duration_1st_tone == 255:
LOG.debug("Duration of first 2 Tone digit is not yet " +
"configured. Setting to 600ms")
duration_1st_tone = 60

if duration_1st_tone <= len(LIST_5TONE_DELAY):
line = RadioSetting("_2tone.duration_1st_tone",
"Duration 1st Tone",
RadioSettingValueList(LIST_5TONE_DELAY,
LIST_5TONE_DELAY[
duration_1st_tone]))
encode_2tone.append(line)

duration_2nd_tone = self._memobj._2tone.duration_2nd_tone
if duration_2nd_tone == 255:
LOG.debug("Duration of second 2 Tone digit is not yet " +
"configured. Setting to 600ms")
duration_2nd_tone = 60

if duration_2nd_tone <= len(LIST_5TONE_DELAY):
line = RadioSetting("_2tone.duration_2nd_tone",
"Duration 2nd Tone",
RadioSettingValueList(LIST_5TONE_DELAY,
LIST_5TONE_DELAY[
duration_2nd_tone]))
encode_2tone.append(line)

duration_gap = self._memobj._2tone.duration_gap
if duration_gap == 255:
LOG.debug("Duration of gap is not yet " +
"configured. Setting to 300ms")
duration_gap = 30

if duration_gap <= len(LIST_5TONE_DELAY):
line = RadioSetting("_2tone.duration_gap", "Duration of gap",
RadioSettingValueList(LIST_5TONE_DELAY,
LIST_5TONE_DELAY[
duration_gap]))
encode_2tone.append(line)

def _2tone_validate(value):
if value == 0:
return 65535
if value == 65535:
return value
if not (300 <= value and value <= 3000):
msg = ("2 Tone Frequency: Must be between 300 and 3000 Hz")
raise InvalidValueError(msg)
return value

def apply_2tone_freq(setting, obj):
val = int(setting.value)
if (val == 0) or (val == 65535):
obj.set_value(65535)
else:
obj.set_value(val)

i = 1
for code in self._memobj._2tone._2tone_encode:
code_2tone = RadioSettingGroup("code_2tone_" + str(i),
"Encode Code " + str(i))
encode_2tone.append(code_2tone)

tmp = code.freq1
if tmp == 65535:
tmp = 0
val1 = RadioSettingValueInteger(0, 65535, tmp)
freq1 = RadioSetting("2tone_code_" + str(i) + "_freq1",
"Frequency 1", val1)
val1.set_validate_callback(_2tone_validate)
freq1.set_apply_callback(apply_2tone_freq, code.freq1)
code_2tone.append(freq1)

tmp = code.freq2
if tmp == 65535:
tmp = 0
val2 = RadioSettingValueInteger(0, 65535, tmp)
freq2 = RadioSetting("2tone_code_" + str(i) + "_freq2",
"Frequency 2", val2)
val2.set_validate_callback(_2tone_validate)
freq2.set_apply_callback(apply_2tone_freq, code.freq2)
code_2tone.append(freq2)

i = i + 1

decode_reset_time = _mem._2tone.reset_time
if decode_reset_time == 255:
decode_reset_time = 59
LOG.debug("Decode reset time unconfigured. resetting.")
if decode_reset_time <= len(LIST_5TONE_RESET):
list = RadioSettingValueList(
LIST_5TONE_RESET,
LIST_5TONE_RESET[
decode_reset_time])
line = RadioSetting("_2tone.reset_time",
"Decode reset time", list)
decode_2tone.append(line)
else:
LOG.debug("Invalid value decode reset time! Disabling.")

def apply_2tone_freq_pair(setting, obj):
val = int(setting.value)
derived_val = 65535
frqname = str(setting._name[-5:])
derivedname = "derived_from_" + frqname

if (val == 0):
val = 65535
derived_val = 65535
else:
derived_val = int(round(2304000.0/val))

obj[frqname].set_value(val)
obj[derivedname].set_value(derived_val)

LOG.debug("Apply " + frqname + ": " + str(val) + " | " +
derivedname + ": " + str(derived_val))

i = 1
for decode_code in self._memobj._2tone._2tone_decode:
_2tone_dec_code = RadioSettingGroup("code_2tone_" + str(i),
"Decode Code " + str(i))
decode_2tone.append(_2tone_dec_code)

j = 1
for dec in decode_code.decs:
val = dec.dec
if val == 255:
LOG.debug("Dec for Code " + str(i) + " Dec " + str(j) +
" is not yet configured. Setting to 0.")
val = 0

if val <= len(LIST_2TONE_DEC):
line = RadioSetting(
"_2tone_dec_settings_" + str(i) + "_dec_" + str(j),
"Dec " + str(j), RadioSettingValueList
(LIST_2TONE_DEC,
LIST_2TONE_DEC[val]))
line.set_apply_callback(apply_list_value, dec.dec)
_2tone_dec_code.append(line)
else:
LOG.debug("Invalid value for 2tone dec! Disabling.")

val = dec.response
if val == 255:
LOG.debug("Response for Code " + str(i) + " Dec " +
str(j) + " is not yet configured. Setting to 0.")
val = 0

if val <= len(LIST_2TONE_RESPONSE):
line = RadioSetting(
"_2tone_dec_settings_" + str(i) + "_resp_" + str(j),
"Response " + str(j), RadioSettingValueList
(LIST_2TONE_RESPONSE,
LIST_2TONE_RESPONSE[val]))
line.set_apply_callback(apply_list_value, dec.response)
_2tone_dec_code.append(line)
else:
LOG.debug("Invalid value for 2tone response! Disabling.")

val = dec.alert
if val == 255:
LOG.debug("Alert for Code " + str(i) + " Dec " + str(j) +
" is not yet configured. Setting to 0.")
val = 0

if val <= len(PTTIDCODE_LIST):
line = RadioSetting(
"_2tone_dec_settings_" + str(i) + "_alert_" + str(j),
"Alert " + str(j), RadioSettingValueList
(PTTIDCODE_LIST,
PTTIDCODE_LIST[val]))
line.set_apply_callback(apply_list_value, dec.alert)
_2tone_dec_code.append(line)
else:
LOG.debug("Invalid value for 2tone alert! Disabling.")
j = j + 1

freq = self._memobj._2tone.freqs[i-1]
for char in ['A', 'B', 'C', 'D']:
setting_name = "freq" + str(char)

tmp = freq[setting_name]
if tmp == 65535:
tmp = 0
if tmp != 0:
expected = int(round(2304000.0/tmp))
from_mem = freq["derived_from_" + setting_name]
if expected != from_mem:
LOG.error("Expected " + str(expected) +
" but read " + str(from_mem) +
". Disabling 2Tone Decode Freqs!")
break
val = RadioSettingValueInteger(0, 65535, tmp)
frq = RadioSetting("2tone_dec_" + str(i) + "_freq" + str(char),
("Decode Frequency " + str(char)), val)
val.set_validate_callback(_2tone_validate)
frq.set_apply_callback(apply_2tone_freq_pair, freq)
_2tone_dec_code.append(frq)

i = i + 1

return top

def set_settings(self, settings):
_settings = self._memobj.settings
for element in settings:
if not isinstance(element, RadioSetting):
if element.get_name() == "fm_preset":
self._set_fm_preset(element)
else:
self.set_settings(element)
continue
else:
try:
name = element.get_name()
if "." in name:
bits = name.split(".")
obj = self._memobj
for bit in bits[:-1]:
if "/" in bit:
bit, index = bit.split("/", 1)
index = int(index)
obj = getattr(obj, bit)[index]
else:
obj = getattr(obj, bit)
setting = bits[-1]
else:
obj = _settings
setting = element.get_name()

if element.has_apply_callback():
LOG.debug("Using apply callback")
element.run_apply_callback()
elif element.value.get_mutable():
LOG.debug("Setting %s = %s" % (setting, element.value))
setattr(obj, setting, element.value)
except Exception, e:
LOG.debug(element.get_name())
raise

@classmethod
def match_model(cls, filedata, filename):
match_size = False
match_model = False

# testing the file data size
if len(filedata) == MEM_SIZE:
match_size = True

# testing the firmware model fingerprint
match_model = model_match(cls, filedata)

if match_size and match_model:
return True
else:
return False


MEM_FORMAT = """
#seekto 0x0000;
struct {
lbcd rxfreq[4];
lbcd txfreq[4];
ul16 rxtone;
ul16 txtone;
u8 unknown0:4,
scode:4;
u8 unknown1:2,
spmute:2,
unknown2:2,
optsig:2;
u8 unknown3:3,
scramble:1,
unknown4:3,
power:1;
u8 unknown5:1,
wide:1,
unknown6:2,
bcl:1,
add:1,
pttid:2;
} memory[200];

#seekto 0x0E00;
struct {
u8 tdr;
u8 unknown1;
u8 sql;
u8 unknown2[2];
u8 tot;
u8 apo; // BTech radios use this as the Auto Power Off time
// other radios use this as pre-Time Out Alert
u8 unknown3;
u8 abr;
u8 beep;
u8 unknown4[4];
u8 dtmfst;
u8 unknown5[2];
u8 prisc;
u8 prich;
u8 screv;
u8 unknown6[2];
u8 pttid;
u8 pttlt;
u8 unknown7;
u8 emctp;
u8 emcch;
u8 ringt;
u8 unknown8;
u8 camdf;
u8 cbmdf;
u8 sync; // BTech radios use this as the display sync setting
// other radios use this as the auto keypad lock setting
u8 ponmsg;
u8 wtled;
u8 rxled;
u8 txled;
u8 unknown9[5];
u8 anil;
u8 reps;
u8 repm;
u8 tdrab;
u8 ste;
u8 rpste;
u8 rptdl;
u8 mgain;
u8 dtmfg;
} settings;

#seekto 0x0E80;
struct {
u8 unknown1;
u8 vfomr;
u8 keylock;
u8 unknown2;
u8 unknown3:4,
vfomren:1,
unknown4:1,
reseten:1,
menuen:1;
u8 unknown5[11];
u8 dispab;
u8 mrcha;
u8 mrchb;
u8 menu;
} settings2;

#seekto 0x0EC0;
struct {
char line1[6];
char line2[6];
} poweron_msg;

struct settings_vfo {
u8 freq[8];
u8 offset[6];
u8 unknown2[2];
ul16 rxtone;
ul16 txtone;
u8 scode;
u8 spmute;
u8 optsig;
u8 scramble;
u8 wide;
u8 power;
u8 shiftd;
u8 step;
u8 unknown3[4];
};

#seekto 0x0F00;
struct {
struct settings_vfo a;
struct settings_vfo b;
} vfo;

#seekto 0x1000;
struct {
char name[6];
u8 unknown1[10];
} names[200];

#seekto 0x2400;
struct {
u8 period; // one out of LIST_5TONE_STANDARD_PERIODS
u8 group_tone;
u8 repeat_tone;
u8 unused[13];
} _5tone_std_settings[15];

#seekto 0x2500;
struct {
u8 frame1[5];
u8 frame2[5];
u8 frame3[5];
u8 standard; // one out of LIST_5TONE_STANDARDS
} _5tone_codes[15];

#seekto 0x25F0;
struct {
u8 _5tone_delay1; // * 10ms
u8 _5tone_delay2; // * 10ms
u8 _5tone_delay3; // * 10ms
u8 _5tone_first_digit_ext_length;
u8 unknown1;
u8 unknown2;
u8 unknown3;
u8 unknown4;
u8 decode_standard;
u8 unknown5:5,
_5tone_decode_call_frame3:1,
_5tone_decode_call_frame2:1,
_5tone_decode_call_frame1:1;
u8 unknown6:5,
_5tone_decode_disp_frame3:1,
_5tone_decode_disp_frame2:1,
_5tone_decode_disp_frame1:1;
u8 decode_reset_time; // * 100 + 100ms
} _5tone_settings;

#seekto 0x2900;
struct {
u8 code[16]; // 0=x0A, A=0x0D, B=0x0E, C=0x0F, D=0x00, #=0x0C *=0x0B
} dtmf_codes[15];

#seekto 0x29F0;
struct {
u8 dtmfspeed_on; //list with 50..2000ms in steps of 10
u8 dtmfspeed_off; //list with 50..2000ms in steps of 10
u8 unknown0[14];
u8 inspection[16];
u8 monitor[16];
u8 alarmcode[16];
u8 stun[16];
u8 kill[16];
u8 revive[16];
u8 unknown1[16];
u8 unknown2[16];
u8 unknown3[16];
u8 unknown4[16];
u8 unknown5[16];
u8 unknown6[16];
u8 unknown7[16];
u8 masterid[16];
u8 viceid[16];
u8 unused01:7,
mastervice:1;
u8 unused02:3,
mrevive:1,
mkill:1,
mstun:1,
mmonitor:1,
minspection:1;
u8 unused03:3,
vrevive:1,
vkill:1,
vstun:1,
vmonitor:1,
vinspection:1;
u8 unused04:6,
txdisable:1,
rxdisable:1;
u8 groupcode;
u8 spacecode;
u8 delayproctime; // * 100 + 100ms
u8 resettime; // * 100 + 100ms
} dtmf_settings;

#seekto 0x2D00;
struct {
struct {
ul16 freq1;
u8 unused01[6];
ul16 freq2;
u8 unused02[6];
} _2tone_encode[15];
u8 duration_1st_tone; // *10ms
u8 duration_2nd_tone; // *10ms
u8 duration_gap; // *10ms
u8 unused03[13];
struct {
struct {
u8 dec; // one out of LIST_2TONE_DEC
u8 response; // one out of LIST_2TONE_RESPONSE
u8 alert; // 1-16
} decs[4];
u8 unused04[4];
} _2tone_decode[15];
u8 unused05[16];

struct {
ul16 freqA;
ul16 freqB;
ul16 freqC;
ul16 freqD;
// unknown what those values mean, but they are
// derived from configured frequencies
ul16 derived_from_freqA; // 2304000/freqA
ul16 derived_from_freqB; // 2304000/freqB
ul16 derived_from_freqC; // 2304000/freqC
ul16 derived_from_freqD; // 2304000/freqD
}freqs[15];
u8 reset_time; // * 100 + 100ms - 100-8000ms
} _2tone;

#seekto 0x3000;
struct {
u8 freq[8];
char broadcast_station_name[6];
u8 unknown[2];
} fm_radio_preset[16];

#seekto 0x3C90;
struct {
u8 vhf_low[3];
u8 vhf_high[3];
u8 uhf_low[3];
u8 uhf_high[3];
} ranges;

// the UV-2501+220 & KT8900R has different zones for storing ranges

#seekto 0x3CD0;
struct {
u8 vhf_low[3];
u8 vhf_high[3];
u8 unknown1[4];
u8 unknown2[6];
u8 vhf2_low[3];
u8 vhf2_high[3];
u8 unknown3[4];
u8 unknown4[6];
u8 uhf_low[3];
u8 uhf_high[3];
} ranges220;

#seekto 0x3F70;
struct {
char fp[6];
} fingerprint;

"""


class BTech(BTechMobileCommon):
"""BTECH's UV-5001 and alike radios"""
BANDS = 2
COLOR_LCD = False
NAME_LENGTH = 6

def set_options(self):
"""This is to read the options from the image and set it in the
environment, for now just the limits of the freqs in the VHF/UHF
ranges"""

# setting the correct ranges for each radio type
if self.MODEL in ["UV-2501+220", "KT8900R"]:
# the model 2501+220 has a segment in 220
# and a different position in the memmap
# also the QYT KT8900R
ranges = self._memobj.ranges220
else:
ranges = self._memobj.ranges

# the normal dual bands
vhf = _decode_ranges(ranges.vhf_low, ranges.vhf_high)
uhf = _decode_ranges(ranges.uhf_low, ranges.uhf_high)

# DEBUG
LOG.info("Radio ranges: VHF %d to %d" % vhf)
LOG.info("Radio ranges: UHF %d to %d" % uhf)

# 220Mhz radios case
if self.MODEL in ["UV-2501+220", "KT8900R"]:
vhf2 = _decode_ranges(ranges.vhf2_low, ranges.vhf2_high)
LOG.info("Radio ranges: VHF(220) %d to %d" % vhf2)
self._220_range = vhf2

# set the class with the real data
self._vhf_range = vhf
self._uhf_range = uhf

def process_mmap(self):
"""Process the mem map into the mem object"""

# Get it
self._memobj = bitwise.parse(MEM_FORMAT, self._mmap)

# load specific parameters from the radio image
self.set_options()


# Declaring Aliases (Clones of the real radios)
class JT2705M(chirp_common.Alias):
VENDOR = "Jetstream"
MODEL = "JT2705M"


class JT6188Mini(chirp_common.Alias):
VENDOR = "Juentai"
MODEL = "JT-6188 Mini"


class JT6188Plus(chirp_common.Alias):
VENDOR = "Juentai"
MODEL = "JT-6188 Plus"


class SSGT890(chirp_common.Alias):
VENDOR = "Sainsonic"
MODEL = "GT-890"


class ZastoneMP300(chirp_common.Alias):
VENDOR = "Zastone"
MODEL = "MP-300"


# real radios
@directory.register
class UV2501(BTech):
"""Baofeng Tech UV2501"""
MODEL = "UV-2501"
_fileid = [UV2501G3_fp,
UV2501G2_fp,
UV2501pp2_fp,
UV2501pp_fp]


@directory.register
class UV2501_220(BTech):
"""Baofeng Tech UV2501+220"""
MODEL = "UV-2501+220"
BANDS = 3
_magic = MSTRING_220
_id2 = [UV2501_220pp_id, ]
_fileid = [UV2501_220G3_fp,
UV2501_220G2_fp,
UV2501_220_fp,
UV2501_220pp_fp]


@directory.register
class UV5001(BTech):
"""Baofeng Tech UV5001"""
MODEL = "UV-5001"
_fileid = [UV5001G3_fp,
UV5001G22_fp,
UV5001G2_fp,
UV5001alpha_fp,
UV5001pp_fp]
_power_levels = [chirp_common.PowerLevel("High", watts=50),
chirp_common.PowerLevel("Low", watts=10)]


@directory.register
class MINI8900(BTech):
"""WACCOM MINI-8900"""
VENDOR = "WACCOM"
MODEL = "MINI-8900"
_magic = MSTRING_MINI8900
_fileid = [MINI8900_fp, ]
# Clones
ALIASES = [JT6188Plus, ]


@directory.register
class KTUV980(BTech):
"""QYT KT-UV980"""
VENDOR = "QYT"
MODEL = "KT-UV980"
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_MINI8900
_fileid = [KTUV980_fp, ]
# Clones
ALIASES = [JT2705M, ]

# Please note that there is a version of this radios that is a clone of the
# Waccom Mini8900, maybe an early version?


class OTGRadioV1(chirp_common.Alias):
VENDOR = 'OTGSTUFF'
MODEL = 'OTG Radio v1'


@directory.register
class KT9800(BTech):
"""QYT KT8900"""
VENDOR = "QYT"
MODEL = "KT8900"
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900
_fileid = [KT8900_fp,
KT8900_fp1,
KT8900_fp2,
KT8900_fp3,
KT8900_fp4,
KT8900_fp5,
KT8900_fp6,
KT8900_fp7]
_id2 = [KT8900_id, KT8900_id2]
# Clones
ALIASES = [JT6188Mini, SSGT890, ZastoneMP300]


@directory.register
class KT9800R(BTech):
"""QYT KT8900R"""
VENDOR = "QYT"
MODEL = "KT8900R"
BANDS = 3
_vhf_range = (136000000, 175000000)
_220_range = (240000000, 271000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900R
_fileid = [KT8900R_fp,
KT8900R_fp1,
KT8900R_fp2,
KT8900R_fp3,
KT8900R_fp4,
KT8900R_fp5]
_id2 = [KT8900R_id, KT8900R_id2]


@directory.register
class LT588UV(BTech):
"""LUITON LT-588UV"""
VENDOR = "LUITON"
MODEL = "LT-588UV"
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900
_fileid = [LT588UV_fp,
LT588UV_fp1]
_power_levels = [chirp_common.PowerLevel("High", watts=60),
chirp_common.PowerLevel("Low", watts=10)]


COLOR_MEM_FORMAT = """
#seekto 0x0000;
struct {
lbcd rxfreq[4];
lbcd txfreq[4];
ul16 rxtone;
ul16 txtone;
u8 unknown0:4,
scode:4;
u8 unknown1:2,
spmute:2,
unknown2:2,
optsig:2;
u8 unknown3:3,
scramble:1,
unknown4:2,
power:2;
u8 unknown5:1,
wide:1,
unknown6:2,
bcl:1,
add:1,
pttid:2;
} memory[200];

#seekto 0x0E00;
struct {
u8 tmr;
u8 unknown1;
u8 sql;
u8 unknown2;
u8 mgain2;
u8 tot;
u8 apo;
u8 unknown3;
u8 abr;
u8 beep;
u8 unknown4[4];
u8 dtmfst;
u8 unknown5[2];
u8 screv;
u8 unknown6[2];
u8 pttid;
u8 pttlt;
u8 unknown7;
u8 emctp;
u8 emcch;
u8 sigbp;
u8 unknown8;
u8 camdf;
u8 cbmdf;
u8 ccmdf;
u8 cdmdf;
u8 langua;
u8 sync; // BTech radios use this as the display sync
// setting, other radios use this as the auto
// keypad lock setting
u8 mainfc;
u8 mainbc;
u8 menufc;
u8 menubc;
u8 stafc;
u8 stabc;
u8 sigfc;
u8 sigbc;
u8 rxfc;
u8 txfc;
u8 txdisp;
u8 unknown9[5];
u8 anil;
u8 reps;
u8 repm;
u8 tmrmr;
u8 ste;
u8 rpste;
u8 rptdl;
u8 dtmfg;
u8 mgain; // used by db25-g for ponyey
u8 skiptx;
u8 scmode;
} settings;

#seekto 0x0E80;
struct {
u8 unknown1;
u8 vfomr;
u8 keylock;
u8 unknown2;
u8 unknown3:4,
vfomren:1,
unknown4:1,
reseten:1,
menuen:1;
u8 unknown5[11];
u8 dispab;
u8 unknown6[2];
u8 menu;
u8 unknown7[7];
u8 vfomra;
u8 vfomrb;
u8 vfomrc;
u8 vfomrd;
u8 mrcha;
u8 mrchb;
u8 mrchc;
u8 mrchd;
} settings2;

struct settings_vfo {
u8 freq[8];
u8 offset[6];
u8 unknown2[2];
ul16 rxtone;
ul16 txtone;
u8 scode;
u8 spmute;
u8 optsig;
u8 scramble;
u8 wide;
u8 power;
u8 shiftd;
u8 step;
u8 unknown3[4];
};

#seekto 0x0F00;
struct {
struct settings_vfo a;
struct settings_vfo b;
struct settings_vfo c;
struct settings_vfo d;
} vfo;

#seekto 0x0F80;
struct {
char line1[8];
char line2[8];
char line3[8];
char line4[8];
char line5[8];
char line6[8];
char line7[8];
char line8[8];
} poweron_msg;

#seekto 0x1000;
struct {
char name[8];
u8 unknown1[8];
} names[200];

#seekto 0x2400;
struct {
u8 period; // one out of LIST_5TONE_STANDARD_PERIODS
u8 group_tone;
u8 repeat_tone;
u8 unused[13];
} _5tone_std_settings[15];

#seekto 0x2500;
struct {
u8 frame1[5];
u8 frame2[5];
u8 frame3[5];
u8 standard; // one out of LIST_5TONE_STANDARDS
} _5tone_codes[15];

#seekto 0x25F0;
struct {
u8 _5tone_delay1; // * 10ms
u8 _5tone_delay2; // * 10ms
u8 _5tone_delay3; // * 10ms
u8 _5tone_first_digit_ext_length;
u8 unknown1;
u8 unknown2;
u8 unknown3;
u8 unknown4;
u8 decode_standard;
u8 unknown5:5,
_5tone_decode_call_frame3:1,
_5tone_decode_call_frame2:1,
_5tone_decode_call_frame1:1;
u8 unknown6:5,
_5tone_decode_disp_frame3:1,
_5tone_decode_disp_frame2:1,
_5tone_decode_disp_frame1:1;
u8 decode_reset_time; // * 100 + 100ms
} _5tone_settings;

#seekto 0x2900;
struct {
u8 code[16]; // 0=x0A, A=0x0D, B=0x0E, C=0x0F, D=0x00, #=0x0C *=0x0B
} dtmf_codes[15];

#seekto 0x29F0;
struct {
u8 dtmfspeed_on; //list with 50..2000ms in steps of 10
u8 dtmfspeed_off; //list with 50..2000ms in steps of 10
u8 unknown0[14];
u8 inspection[16];
u8 monitor[16];
u8 alarmcode[16];
u8 stun[16];
u8 kill[16];
u8 revive[16];
u8 unknown1[16];
u8 unknown2[16];
u8 unknown3[16];
u8 unknown4[16];
u8 unknown5[16];
u8 unknown6[16];
u8 unknown7[16];
u8 masterid[16];
u8 viceid[16];
u8 unused01:7,
mastervice:1;
u8 unused02:3,
mrevive:1,
mkill:1,
mstun:1,
mmonitor:1,
minspection:1;
u8 unused03:3,
vrevive:1,
vkill:1,
vstun:1,
vmonitor:1,
vinspection:1;
u8 unused04:6,
txdisable:1,
rxdisable:1;
u8 groupcode;
u8 spacecode;
u8 delayproctime; // * 100 + 100ms
u8 resettime; // * 100 + 100ms
} dtmf_settings;

#seekto 0x2D00;
struct {
struct {
ul16 freq1;
u8 unused01[6];
ul16 freq2;
u8 unused02[6];
} _2tone_encode[15];
u8 duration_1st_tone; // *10ms
u8 duration_2nd_tone; // *10ms
u8 duration_gap; // *10ms
u8 unused03[13];
struct {
struct {
u8 dec; // one out of LIST_2TONE_DEC
u8 response; // one out of LIST_2TONE_RESPONSE
u8 alert; // 1-16
} decs[4];
u8 unused04[4];
} _2tone_decode[15];
u8 unused05[16];

struct {
ul16 freqA;
ul16 freqB;
ul16 freqC;
ul16 freqD;
// unknown what those values mean, but they are
// derived from configured frequencies
ul16 derived_from_freqA; // 2304000/freqA
ul16 derived_from_freqB; // 2304000/freqB
ul16 derived_from_freqC; // 2304000/freqC
ul16 derived_from_freqD; // 2304000/freqD
}freqs[15];
u8 reset_time; // * 100 + 100ms - 100-8000ms
} _2tone;

#seekto 0x3D80;
struct {
u8 vhf_low[3];
u8 vhf_high[3];
u8 unknown1[4];
u8 unknown2[6];
u8 vhf2_low[3];
u8 vhf2_high[3];
u8 unknown3[4];
u8 unknown4[6];
u8 uhf_low[3];
u8 uhf_high[3];
u8 unknown5[4];
u8 unknown6[6];
u8 uhf2_low[3];
u8 uhf2_high[3];
} ranges;

#seekto 0x3F70;
struct {
char fp[6];
} fingerprint;

"""


class BTechColor(BTechMobileCommon):
"""BTECH's Color LCD Mobile and alike radios"""
COLOR_LCD = True
NAME_LENGTH = 8
LIST_TMR = LIST_TMR16

def process_mmap(self):
"""Process the mem map into the mem object"""

# Get it
self._memobj = bitwise.parse(COLOR_MEM_FORMAT, self._mmap)

# load specific parameters from the radio image
self.set_options()

def set_options(self):
"""This is to read the options from the image and set it in the
environment, for now just the limits of the freqs in the VHF/UHF
ranges"""

# setting the correct ranges for each radio type
ranges = self._memobj.ranges

# the normal dual bands
vhf = _decode_ranges(ranges.vhf_low, ranges.vhf_high)
uhf = _decode_ranges(ranges.uhf_low, ranges.uhf_high)

# DEBUG
LOG.info("Radio ranges: VHF %d to %d" % vhf)
LOG.info("Radio ranges: UHF %d to %d" % uhf)

# the additional bands
if self.MODEL in ["UV-25X4", "KT7900D"]:
# 200Mhz band
vhf2 = _decode_ranges(ranges.vhf2_low, ranges.vhf2_high)
LOG.info("Radio ranges: VHF(220) %d to %d" % vhf2)
self._220_range = vhf2

# 350Mhz band
uhf2 = _decode_ranges(ranges.uhf2_low, ranges.uhf2_high)
LOG.info("Radio ranges: UHF(350) %d to %d" % uhf2)
self._350_range = uhf2

# set the class with the real data
self._vhf_range = vhf
self._uhf_range = uhf


# Declaring Aliases (Clones of the real radios)
class SKT8900D(chirp_common.Alias):
VENDOR = "Surecom"
MODEL = "S-KT8900D"


class QB25(chirp_common.Alias):
VENDOR = "Radioddity"
MODEL = "QB25"


# real radios
@directory.register
class UV25X2(BTechColor):
"""Baofeng Tech UV25X2"""
MODEL = "UV-25X2"
BANDS = 2
_vhf_range = (130000000, 180000000)
_uhf_range = (400000000, 521000000)
_magic = MSTRING_UV25X2
_fileid = [UV25X2_fp, ]


@directory.register
class UV25X4(BTechColor):
"""Baofeng Tech UV25X4"""
MODEL = "UV-25X4"
BANDS = 4
_vhf_range = (130000000, 180000000)
_220_range = (200000000, 271000000)
_uhf_range = (400000000, 521000000)
_350_range = (350000000, 391000000)
_magic = MSTRING_UV25X4
_fileid = [UV25X4_fp, ]


@directory.register
class UV50X2(BTechColor):
"""Baofeng Tech UV50X2"""
MODEL = "UV-50X2"
BANDS = 2
_vhf_range = (130000000, 180000000)
_uhf_range = (400000000, 521000000)
_magic = MSTRING_UV25X2
_fileid = [UV50X2_fp, ]
_power_levels = [chirp_common.PowerLevel("High", watts=50),
chirp_common.PowerLevel("Low", watts=10)]


@directory.register
class KT7900D(BTechColor):
"""QYT KT7900D"""
VENDOR = "QYT"
MODEL = "KT7900D"
BANDS = 4
LIST_TMR = LIST_TMR15
_vhf_range = (136000000, 175000000)
_220_range = (200000000, 271000000)
_uhf_range = (400000000, 481000000)
_350_range = (350000000, 371000000)
_magic = MSTRING_KT8900D
_fileid = [KT7900D_fp, KT7900D_fp1, KT7900D_fp2, KT7900D_fp3, KT7900D_fp4,
KT7900D_fp5, KT7900D_fp6, KT7900D_fp7, QB25_fp, ]
# Clones
ALIASES = [SKT8900D, QB25, ]


@directory.register
class KT8900D(BTechColor):
"""QYT KT8900D"""
VENDOR = "QYT"
MODEL = "KT8900D"
BANDS = 2
LIST_TMR = LIST_TMR15
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900D
_fileid = [KT8900D_fp3, KT8900D_fp2, KT8900D_fp1, KT8900D_fp]

# Clones
ALIASES = [OTGRadioV1]


@directory.register
class KT5800(BTechColor):
"""QYT KT5800"""
VENDOR = "QYT"
MODEL = "KT5800"
BANDS = 2
LIST_TMR = LIST_TMR15
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900D
_fileid = [KT5800_fp, ]


@directory.register
class KT980PLUS(BTechColor):
"""QYT KT980PLUS"""
VENDOR = "QYT"
MODEL = "KT980PLUS"
BANDS = 2
LIST_TMR = LIST_TMR15
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900D
_fileid = [KT980PLUS_fp1, KT980PLUS_fp]
_power_levels = [chirp_common.PowerLevel("High", watts=75),
chirp_common.PowerLevel("Low", watts=55)]

@classmethod
def match_model(cls, filedata, filename):
# This model is only ever matched via metadata
return False


@directory.register
class DB25G(BTechColor):
"""Radioddity DB25-G"""
VENDOR = "Radioddity"
MODEL = "DB25-G"
BANDS = 2
LIST_TMR = LIST_TMR15
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900D
_fileid = [DB25G_fp1, DB25G_fp]
_gmrs = True
_power_levels = [chirp_common.PowerLevel("High", watts=25),
chirp_common.PowerLevel("Mid", watts=15),
chirp_common.PowerLevel("Low", watts=5)]

@classmethod
def match_model(cls, filedata, filename):
# This model is only ever matched via metadata
return False


GMRS_MEM_FORMAT = """
#seekto 0x0000;
struct {
lbcd rxfreq[4];
lbcd txfreq[4];
ul16 rxtone;
ul16 txtone;
u8 unknown0:4,
scode:4;
u8 unknown1:2,
spmute:2,
unknown2:2,
optsig:2;
u8 unknown3:3,
scramble:1,
unknown4:2,
power:2;
u8 unknown5:1,
wide:1,
unknown6:2,
bcl:1,
add:1,
pttid:2;
} memory[256];

#seekto 0x1000;
struct {
char name[7];
u8 unknown1[9];
} names[256];

#seekto 0x2400;
struct {
u8 period; // one out of LIST_5TONE_STANDARD_PERIODS
u8 group_tone;
u8 repeat_tone;
u8 unused[13];
} _5tone_std_settings[15];

#seekto 0x2500;
struct {
u8 frame1[5];
u8 frame2[5];
u8 frame3[5];
u8 standard; // one out of LIST_5TONE_STANDARDS
} _5tone_codes[15];

#seekto 0x25F0;
struct {
u8 _5tone_delay1; // * 10ms
u8 _5tone_delay2; // * 10ms
u8 _5tone_delay3; // * 10ms
u8 _5tone_first_digit_ext_length;
u8 unknown1;
u8 unknown2;
u8 unknown3;
u8 unknown4;
u8 decode_standard;
u8 unknown5:5,
_5tone_decode_call_frame3:1,
_5tone_decode_call_frame2:1,
_5tone_decode_call_frame1:1;
u8 unknown6:5,
_5tone_decode_disp_frame3:1,
_5tone_decode_disp_frame2:1,
_5tone_decode_disp_frame1:1;
u8 decode_reset_time; // * 100 + 100ms
} _5tone_settings;

#seekto 0x2900;
struct {
u8 code[16]; // 0=x0A, A=0x0D, B=0x0E, C=0x0F, D=0x00, #=0x0C *=0x0B
} dtmf_codes[15];

#seekto 0x29F0;
struct {
u8 dtmfspeed_on; //list with 50..2000ms in steps of 10
u8 dtmfspeed_off; //list with 50..2000ms in steps of 10
u8 unknown0[14];
u8 inspection[16];
u8 monitor[16];
u8 alarmcode[16];
u8 stun[16];
u8 kill[16];
u8 revive[16];
u8 unknown1[16];
u8 unknown2[16];
u8 unknown3[16];
u8 unknown4[16];
u8 unknown5[16];
u8 unknown6[16];
u8 unknown7[16];
u8 masterid[16];
u8 viceid[16];
u8 unused01:7,
mastervice:1;
u8 unused02:3,
mrevive:1,
mkill:1,
mstun:1,
mmonitor:1,
minspection:1;
u8 unused03:3,
vrevive:1,
vkill:1,
vstun:1,
vmonitor:1,
vinspection:1;
u8 unused04:6,
txdisable:1,
rxdisable:1;
u8 groupcode;
u8 spacecode;
u8 delayproctime; // * 100 + 100ms
u8 resettime; // * 100 + 100ms
} dtmf_settings;

#seekto 0x2D00;
struct {
struct {
ul16 freq1;
u8 unused01[6];
ul16 freq2;
u8 unused02[6];
} _2tone_encode[15];
u8 duration_1st_tone; // *10ms
u8 duration_2nd_tone; // *10ms
u8 duration_gap; // *10ms
u8 unused03[13];
struct {
struct {
u8 dec; // one out of LIST_2TONE_DEC
u8 response; // one out of LIST_2TONE_RESPONSE
u8 alert; // 1-16
} decs[4];
u8 unused04[4];
} _2tone_decode[15];
u8 unused05[16];

struct {
ul16 freqA;
ul16 freqB;
ul16 freqC;
ul16 freqD;
// unknown what those values mean, but they are
// derived from configured frequencies
ul16 derived_from_freqA; // 2304000/freqA
ul16 derived_from_freqB; // 2304000/freqB
ul16 derived_from_freqC; // 2304000/freqC
ul16 derived_from_freqD; // 2304000/freqD
}freqs[15];
u8 reset_time; // * 100 + 100ms - 100-8000ms
} _2tone;

#seekto 0x3000;
struct {
u8 freq[8];
char broadcast_station_name[6];
u8 unknown[2];
} fm_radio_preset[16];

#seekto 0x3200;
struct {
u8 tmr;
u8 unknown1;
u8 sql;
u8 unknown2;
u8 autolk;
u8 tot;
u8 apo;
u8 unknown3;
u8 abr;
u8 beep;
u8 unknown4[4];
u8 dtmfst;
u8 unknown5[2];
u8 screv;
u8 unknown6[2];
u8 pttid;
u8 pttlt;
u8 unknown7;
u8 emctp;
u8 emcch;
u8 sigbp;
u8 unknown8;
u8 camdf;
u8 cbmdf;
u8 ccmdf;
u8 cdmdf;
u8 langua;
u8 sync;


u8 stfc;
u8 mffc;
u8 sfafc;
u8 sfbfc;
u8 sfcfc;
u8 sfdfc;
u8 subfc;
u8 fmfc;
u8 sigfc;
u8 modfc;
u8 menufc;
u8 txfc;
u8 txdisp;
u8 unknown9[5];
u8 anil;
u8 reps;
u8 repm;
u8 tmrmr;
u8 ste;
u8 rpste;
u8 rptdl;
u8 dtmfg;
u8 mgain;
u8 skiptx;
u8 scmode;
} settings;

#seekto 0x3280;
struct {
u8 unknown1;
u8 vfomr;
u8 keylock;
u8 unknown2;
u8 unknown3:4,
vfomren:1,
unknown4:1,
reseten:1,
menuen:1;
u8 unknown5[11];
u8 dispab;
u8 unknown6[2];
u8 smenu;
u8 unknown7[7];
u8 vfomra;
u8 vfomrb;
u8 vfomrc;
u8 vfomrd;
u8 mrcha;
u8 mrchb;
u8 mrchc;
u8 mrchd;
} settings2;

struct settings_vfo {
u8 freq[8];
u8 offset[6];
u8 unknown2[2];
ul16 rxtone;
ul16 txtone;
u8 scode;
u8 spmute;
u8 optsig;
u8 scramble;
u8 wide;
u8 power;
u8 shiftd;
u8 step;
u8 unknown3[4];
};

#seekto 0x3300;
struct {
struct settings_vfo a;
struct settings_vfo b;
struct settings_vfo c;
struct settings_vfo d;
} vfo;

#seekto 0x3D80;
struct {
u8 vhf_low[3];
u8 vhf_high[3];
u8 unknown1[4];
u8 unknown2[6];
u8 vhf2_low[3];
u8 vhf2_high[3];
u8 unknown3[4];
u8 unknown4[6];
u8 uhf_low[3];
u8 uhf_high[3];
u8 unknown5[4];
u8 unknown6[6];
u8 uhf2_low[3];
u8 uhf2_high[3];
} ranges;

#seekto 0x33B0;
struct {
char line[16];
} static_msg;

#seekto 0x3F70;
struct {
char fp[6];
} fingerprint;

"""


class BTechGMRS(BTechMobileCommon):
"""BTECH's GMRS Mobile"""
COLOR_LCD = True
COLOR_LCD2 = True
NAME_LENGTH = 7
UPLOAD_MEM_SIZE = 0X3400

def process_mmap(self):
"""Process the mem map into the mem object"""

# Get it
self._memobj = bitwise.parse(GMRS_MEM_FORMAT, self._mmap)

# load specific parameters from the radio image
self.set_options()

def set_options(self):
"""This is to read the options from the image and set it in the
environment, for now just the limits of the freqs in the VHF/UHF
ranges"""

# setting the correct ranges for each radio type
ranges = self._memobj.ranges

# the normal dual bands
vhf = _decode_ranges(ranges.vhf_low, ranges.vhf_high)
uhf = _decode_ranges(ranges.uhf_low, ranges.uhf_high)

# DEBUG
LOG.info("Radio ranges: VHF %d to %d" % vhf)
LOG.info("Radio ranges: UHF %d to %d" % uhf)

# set the class with the real data
self._vhf_range = vhf
self._uhf_range = uhf


# real radios
@directory.register
class GMRS50X1(BTechGMRS):
"""Baofeng Tech GMRS50X1"""
MODEL = "GMRS-50X1"
BANDS = 2
LIST_TMR = LIST_TMR16
_power_levels = [chirp_common.PowerLevel("High", watts=50),
chirp_common.PowerLevel("Mid", watts=10),
chirp_common.PowerLevel("Low", watts=5)]
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 521000000)
_upper = 255
_magic = MSTRING_GMRS50X1
_fileid = [GMRS50X1_fp1, GMRS50X1_fp, ]


COLORHT_MEM_FORMAT = """
#seekto 0x0000;
struct {
lbcd rxfreq[4];
lbcd txfreq[4];
ul16 rxtone;
ul16 txtone;
u8 unknown0:4,
scode:4;
u8 unknown1:2,
spmute:2,
unknown2:2,
optsig:2;
u8 unknown3:3,
scramble:1,
unknown4:3,
power:1;
u8 unknown5:1,
wide:1,
unknown6:2,
bcl:1,
add:1,
pttid:2;
} memory[200];

#seekto 0x0E00;
struct {
u8 tmr;
u8 unknownE01;
u8 sql;
u8 unknownE03[2];
u8 tot;
u8 save;
u8 unknownE07;
u8 abr;
u8 beep;
u8 unknownE0A[4];
u8 dsub;
u8 dtmfst;
u8 screv;
u8 unknownE11[3];
u8 pttid;
u8 unknownE15;
u8 pttlt;
u8 unknownE17;
u8 emctp;
u8 emcch;
u8 sigbp;
u8 unknownE1B;
u8 camdf;
u8 cbmdf;
u8 ccmdf;
u8 cdmdf;
u8 langua;
u8 voice;
u8 vox;
u8 voxt;
u8 sync; // BTech radios use this as the display sync setting
// other radios use this as the auto keypad lock setting
u8 stfc;
u8 mffc;
u8 sfafc;
u8 sfbfc;
u8 sfcfc;
u8 sfdfc;
u8 subfc;
u8 fmfc;
u8 sigfc;
u8 menufc;
u8 txfc;
u8 rxfc;
u8 unknownE31[5];
u8 anil;
u8 reps;
u8 tmrmr;
u8 ste;
u8 rpste;
u8 rptdl;
u8 dtmfg;
u8 tmrtx;
} settings;

#seekto 0x0E80;
struct {
u8 unknown1;
u8 vfomr;
u8 keylock;
u8 unknown2;
u8 unknown3:4,
vfomren:1,
unknown4:1,
reseten:1,
menuen:1;
u8 unknown5[11];
u8 dispab;
u8 unknown6[2];
u8 menu;
u8 unknown7[7];
u8 vfomra;
u8 vfomrb;
u8 vfomrc;
u8 vfomrd;
u8 mrcha;
u8 mrchb;
u8 mrchc;
u8 mrchd;
} settings2;

struct settings_vfo {
u8 freq[8];
u8 offset[6];
u8 unknown2[2];
ul16 rxtone;
ul16 txtone;
u8 scode;
u8 spmute;
u8 optsig;
u8 scramble;
u8 wide;
u8 power;
u8 shiftd;
u8 step;
u8 unknown3[4];
};

#seekto 0x0F00;
struct {
struct settings_vfo a;
struct settings_vfo b;
struct settings_vfo c;
struct settings_vfo d;
} vfo;

#seekto 0x0FE0;
struct {
char line[16];
} static_msg;

#seekto 0x1000;
struct {
char name[8];
u8 unknown1[8];
} names[200];

#seekto 0x2400;
struct {
u8 period; // one out of LIST_5TONE_STANDARD_PERIODS
u8 group_tone;
u8 repeat_tone;
u8 unused[13];
} _5tone_std_settings[15];

#seekto 0x2500;
struct {
u8 frame1[5];
u8 frame2[5];
u8 frame3[5];
u8 standard; // one out of LIST_5TONE_STANDARDS
} _5tone_codes[15];

#seekto 0x25F0;
struct {
u8 _5tone_delay1; // * 10ms
u8 _5tone_delay2; // * 10ms
u8 _5tone_delay3; // * 10ms
u8 _5tone_first_digit_ext_length;
u8 unknown1;
u8 unknown2;
u8 unknown3;
u8 unknown4;
u8 decode_standard;
u8 unknown5:5,
_5tone_decode_call_frame3:1,
_5tone_decode_call_frame2:1,
_5tone_decode_call_frame1:1;
u8 unknown6:5,
_5tone_decode_disp_frame3:1,
_5tone_decode_disp_frame2:1,
_5tone_decode_disp_frame1:1;
u8 decode_reset_time; // * 100 + 100ms
} _5tone_settings;

#seekto 0x2900;
struct {
u8 code[16]; // 0=x0A, A=0x0D, B=0x0E, C=0x0F, D=0x00, #=0x0C *=0x0B
} dtmf_codes[15];

#seekto 0x29F0;
struct {
u8 dtmfspeed_on; //list with 50..2000ms in steps of 10
u8 dtmfspeed_off; //list with 50..2000ms in steps of 10
u8 unknown0[14];
u8 inspection[16];
u8 monitor[16];
u8 alarmcode[16];
u8 stun[16];
u8 kill[16];
u8 revive[16];
u8 unknown1[16];
u8 unknown2[16];
u8 unknown3[16];
u8 unknown4[16];
u8 unknown5[16];
u8 unknown6[16];
u8 unknown7[16];
u8 masterid[16];
u8 viceid[16];
u8 unused01:7,
mastervice:1;
u8 unused02:3,
mrevive:1,
mkill:1,
mstun:1,
mmonitor:1,
minspection:1;
u8 unused03:3,
vrevive:1,
vkill:1,
vstun:1,
vmonitor:1,
vinspection:1;
u8 unused04:6,
txdisable:1,
rxdisable:1;
u8 groupcode;
u8 spacecode;
u8 delayproctime; // * 100 + 100ms
u8 resettime; // * 100 + 100ms
} dtmf_settings;

#seekto 0x2D00;
struct {
struct {
ul16 freq1;
u8 unused01[6];
ul16 freq2;
u8 unused02[6];
} _2tone_encode[15];
u8 duration_1st_tone; // *10ms
u8 duration_2nd_tone; // *10ms
u8 duration_gap; // *10ms
u8 unused03[13];
struct {
struct {
u8 dec; // one out of LIST_2TONE_DEC
u8 response; // one out of LIST_2TONE_RESPONSE
u8 alert; // 1-16
} decs[4];
u8 unused04[4];
} _2tone_decode[15];
u8 unused05[16];

struct {
ul16 freqA;
ul16 freqB;
ul16 freqC;
ul16 freqD;
// unknown what those values mean, but they are
// derived from configured frequencies
ul16 derived_from_freqA; // 2304000/freqA
ul16 derived_from_freqB; // 2304000/freqB
ul16 derived_from_freqC; // 2304000/freqC
ul16 derived_from_freqD; // 2304000/freqD
}freqs[15];
u8 reset_time; // * 100 + 100ms - 100-8000ms
} _2tone;

#seekto 0x3D80;
struct {
u8 vhf_low[3];
u8 vhf_high[3];
u8 unknown1[4];
u8 unknown2[6];
u8 vhf2_low[3];
u8 vhf2_high[3];
u8 unknown3[4];
u8 unknown4[6];
u8 uhf_low[3];
u8 uhf_high[3];
u8 unknown5[4];
u8 unknown6[6];
u8 uhf2_low[3];
u8 uhf2_high[3];
} ranges;

#seekto 0x3F70;
struct {
char fp[6];
} fingerprint;

"""


class QYTColorHT(BTechMobileCommon):
"""QTY's Color LCD Handheld and alike radios"""
COLOR_LCD = True
COLOR_LCD3 = True
NAME_LENGTH = 8
LIST_TMR = LIST_TMR15

def process_mmap(self):
"""Process the mem map into the mem object"""

# Get it
self._memobj = bitwise.parse(COLORHT_MEM_FORMAT, self._mmap)

# load specific parameters from the radio image
self.set_options()

def set_options(self):
"""This is to read the options from the image and set it in the
environment, for now just the limits of the freqs in the VHF/UHF
ranges"""

# setting the correct ranges for each radio type
ranges = self._memobj.ranges

# the normal dual bands
vhf = _decode_ranges(ranges.vhf_low, ranges.vhf_high)
uhf = _decode_ranges(ranges.uhf_low, ranges.uhf_high)

# DEBUG
LOG.info("Radio ranges: VHF %d to %d" % vhf)
LOG.info("Radio ranges: UHF %d to %d" % uhf)

# the additional bands
if self.MODEL in ["KT-8R"]:
# 200Mhz band
vhf2 = _decode_ranges(ranges.vhf2_low, ranges.vhf2_high)
LOG.info("Radio ranges: VHF(220) %d to %d" % vhf2)
self._220_range = vhf2

# 350Mhz band
uhf2 = _decode_ranges(ranges.uhf2_low, ranges.uhf2_high)
LOG.info("Radio ranges: UHF(350) %d to %d" % uhf2)
self._350_range = uhf2

# set the class with the real data
self._vhf_range = vhf
self._uhf_range = uhf


# real radios
@directory.register
class KT8R(QYTColorHT):
"""QYT KT8R"""
VENDOR = "QYT"
MODEL = "KT-8R"
BANDS = 4
LIST_TMR = LIST_TMR16
_vhf_range = (136000000, 175000000)
_220_range = (200000000, 261000000)
_uhf_range = (400000000, 481000000)
_350_range = (350000000, 391000000)
_magic = MSTRING_KT8R
_fileid = [KT8R_fp2, KT8R_fp1, KT8R_fp, ]
_power_levels = [chirp_common.PowerLevel("High", watts=5),
chirp_common.PowerLevel("Low", watts=1)]
(2-2/3)