Project

General

Profile

Feature #9825 » btech-set_kt8900_band_limits.py

for KT8900 and similar radios only - Jim Unroe, 04/10/2022 06:28 PM

 
# Copyright 2016-2021:
# * Pavel Milanes CO7WT, <pavelmc@gmail.com>
# * Jim Unroe KC9HI, <rock.unroe@gmail.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

import time
import struct
import logging

from time import sleep
from chirp import chirp_common, directory, memmap
from chirp import bitwise, errors, util
from chirp.settings import RadioSettingGroup, RadioSetting, \
RadioSettingValueBoolean, RadioSettingValueList, \
RadioSettingValueString, RadioSettingValueInteger, \
RadioSettingValueFloat, RadioSettings, InvalidValueError
from textwrap import dedent

LOG = logging.getLogger(__name__)

# A note about the memmory in these radios
#
# The real memory of these radios extends to 0x4000
# On read the factory software only uses up to 0x3200
# On write it just uploads the contents up to 0x3100
#
# The mem beyond 0x3200 holds the ID data

MEM_SIZE = 0x4000
BLOCK_SIZE = 0x40
TX_BLOCK_SIZE = 0x10
ACK_CMD = "\x06"
MODES = ["FM", "NFM"]
SKIP_VALUES = ["S", ""]
TONES = chirp_common.TONES
DTCS = sorted(chirp_common.DTCS_CODES + [645])

# lists related to "extra" settings
PTTID_LIST = ["OFF", "BOT", "EOT", "BOTH"]
PTTIDCODE_LIST = ["%s" % x for x in range(1, 16)]
OPTSIG_LIST = ["OFF", "DTMF", "2TONE", "5TONE"]
SPMUTE_LIST = ["Tone/DTCS", "Tone/DTCS and Optsig", "Tone/DTCS or Optsig"]

# lists
LIST_AB = ["A", "B"]
LIST_ABCD = LIST_AB + ["C", "D"]
LIST_ANIL = ["3", "4", "5"]
LIST_APO = ["Off"] + ["%s minutes" % x for x in range(30, 330, 30)]
LIST_COLOR4 = ["Off", "Blue", "Orange", "Purple"]
LIST_COLOR8 = ["White", "Red", "Blue", "Green", "Yellow", "Indego",
"Purple", "Gray"]
LIST_COLOR9 = ["Black"] + LIST_COLOR8
LIST_DTMFST = ["OFF", "Keyboard", "ANI", "Keyboad + ANI"]
LIST_EMCTP = ["TX alarm sound", "TX ANI", "Both"]
LIST_EMCTPX = ["Off"] + LIST_EMCTP
LIST_LANGUA = ["English", "Chinese"]
LIST_MDF = ["Frequency", "Channel", "Name"]
LIST_OFF1TO9 = ["Off"] + ["%s seconds" % x for x in range(1, 10)]
LIST_OFF1TO10 = ["Off"] + ["%s seconds" % x for x in range(1, 11)]
LIST_OFF1TO50 = ["Off"] + ["%s seconds" % x for x in range(1, 51)]
LIST_PONMSG = ["Full", "Message", "Battery voltage"]
LIST_REPM = ["Off", "Carrier", "CTCSS or DCS", "Tone", "DTMF"]
LIST_REPS = ["1000 Hz", "1450 Hz", "1750 Hz", "2100Hz"]
LIST_RPTDL = ["Off"] + ["%s ms" % x for x in range(1, 11)]
LIST_SCMODE = ["Off", "PTT-SC", "MEM-SC", "PON-SC"]
LIST_SHIFT = ["Off", "+", "-"]
LIST_SKIPTX = ["Off", "Skip 1", "Skip 2"]
STEPS = [2.5, 5.0, 6.25, 10.0, 12.5, 25.0]
LIST_STEP = [str(x) for x in STEPS]
LIST_SYNC = ["Off", "AB", "CD", "AB+CD"]
# the first 12 TMR choices common to all color display mobile radios
LIST_TMR12 = ["OFF", "M+A", "M+B", "M+C", "M+D", "M+A+B", "M+A+C", "M+A+D",
"M+B+C", "M+B+D", "M+C+D", "M+A+B+C"]
# the 16 choice list for color display mobile radios that correctly implement
# the full 16 TMR choices
LIST_TMR16 = LIST_TMR12 + ["M+A+B+D", "M+A+C+D", "M+B+C+D", "A+B+C+D"]
# the 15 choice list for color mobile radios that are missing the M+A+B+D
# choice in the TMR menu
LIST_TMR15 = LIST_TMR12 + ["M+A+C+D", "M+B+C+D", "A+B+C+D"]
LIST_TMRTX = ["Track", "Fixed"]
LIST_TOT = ["%s sec" % x for x in range(15, 615, 15)]
LIST_TXDISP = ["Power", "Mic Volume"]
LIST_TXP = ["High", "Low"]
LIST_TXP3 = ["High", "Mid", "Low"]
LIST_SCREV = ["TO (timeout)", "CO (carrier operated)", "SE (search)"]
LIST_VFOMR = ["Frequency", "Channel"]
LIST_VOICE = ["Off"] + LIST_LANGUA
LIST_VOX = ["Off"] + ["%s" % x for x in range(1, 11)]
LIST_VOXT = ["%s seconds" % x for x in range(0, 21)]
LIST_WIDE = ["Wide", "Narrow"]

# lists related to DTMF, 2TONE and 5TONE settings
LIST_5TONE_STANDARDS = ["CCIR1", "CCIR2", "PCCIR", "ZVEI1", "ZVEI2", "ZVEI3",
"PZVEI", "DZVEI", "PDZVEI", "EEA", "EIA", "EURO",
"CCITT", "NATEL", "MODAT", "none"]
LIST_5TONE_STANDARDS_without_none = ["CCIR1", "CCIR2", "PCCIR", "ZVEI1",
"ZVEI2", "ZVEI3",
"PZVEI", "DZVEI", "PDZVEI", "EEA", "EIA",
"EURO", "CCITT", "NATEL", "MODAT"]
LIST_5TONE_STANDARD_PERIODS = ["20", "30", "40", "50", "60", "70", "80", "90",
"100", "110", "120", "130", "140", "150", "160",
"170", "180", "190", "200"]
LIST_5TONE_DIGITS = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A",
"B", "C", "D", "E", "F"]
LIST_5TONE_DELAY = ["%s ms" % x for x in range(0, 1010, 10)]
LIST_5TONE_RESET = ["%s ms" % x for x in range(100, 8100, 100)]
LIST_5TONE_RESET_COLOR = ["%s ms" % x for x in range(100, 20100, 100)]
LIST_DTMF_SPEED = ["%s ms" % x for x in range(50, 2010, 10)]
LIST_DTMF_DIGITS = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B",
"C", "D", "#", "*"]
LIST_DTMF_VALUES = [0x0A, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0D, 0x0E, 0x0F, 0x00, 0x0C, 0x0B]
LIST_DTMF_SPECIAL_DIGITS = ["*", "#", "A", "B", "C", "D"]
LIST_DTMF_SPECIAL_VALUES = [0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x00]
LIST_DTMF_DELAY = ["%s ms" % x for x in range(100, 4100, 100)]
CHARSET_DTMF_DIGITS = "0123456789AaBbCcDd#*"
LIST_2TONE_DEC = ["A-B", "A-C", "A-D",
"B-A", "B-C", "B-D",
"C-A", "C-B", "C-D",
"D-A", "D-B", "D-C"]
LIST_2TONE_RESPONSE = ["None", "Alert", "Transpond", "Alert+Transpond"]

# This is a general serial timeout for all serial read functions.
# Practice has show that about 0.7 sec will be enough to cover all radios.
STIMEOUT = 0.7

# this var controls the verbosity in the debug and by default it's low (False)
# make it True and you will to get a very verbose debug.log
debug = False

# valid chars on the LCD, Note that " " (space) is stored as "\xFF"
VALID_CHARS = chirp_common.CHARSET_ALPHANUMERIC + \
"`{|}!\"#$%&'()*+,-./:;<=>?@[]^_"

GMRS_FREQS1 = [462.5625, 462.5875, 462.6125, 462.6375, 462.6625,
462.6875, 462.7125]
GMRS_FREQS2 = [467.5625, 467.5875, 467.6125, 467.6375, 467.6625,
467.6875, 467.7125]
GMRS_FREQS3 = [462.5500, 462.5750, 462.6000, 462.6250, 462.6500,
462.6750, 462.7000, 462.7250]
GMRS_FREQS = GMRS_FREQS1 + GMRS_FREQS2 + GMRS_FREQS3 * 2


# #### ID strings #####################################################

# BTECH UV2501 pre-production units
UV2501pp_fp = "M2C294"
# BTECH UV2501 pre-production units 2 + and 1st Gen radios
UV2501pp2_fp = "M29204"
# B-TECH UV-2501 second generation (2G) radios
UV2501G2_fp = "BTG214"
# B-TECH UV-2501 third generation (3G) radios
UV2501G3_fp = "BTG324"

# B-TECH UV-2501+220 pre-production units
UV2501_220pp_fp = "M3C281"
# extra block read for the 2501+220 pre-production units
# the same for all of this radios so far
UV2501_220pp_id = " 280528"
# B-TECH UV-2501+220
UV2501_220_fp = "M3G201"
# new variant, let's call it Generation 2
UV2501_220G2_fp = "BTG211"
# B-TECH UV-2501+220 third generation (3G)
UV2501_220G3_fp = "BTG311"

# B-TECH UV-5001 pre-production units + 1st Gen radios
UV5001pp_fp = "V19204"
# B-TECH UV-5001 alpha units
UV5001alpha_fp = "V28204"
# B-TECH UV-5001 second generation (2G) radios
UV5001G2_fp = "BTG214"
# B-TECH UV-5001 second generation (2G2)
UV5001G22_fp = "V2G204"
# B-TECH UV-5001 third generation (3G)
UV5001G3_fp = "BTG304"

# B-TECH UV-25X2
UV25X2_fp = "UC2012"

# B-TECH UV-25X4
UV25X4_fp = "UC4014"

# B-TECH UV-50X2
UV50X2_fp = "UC2M12"

# B-TECH GMRS-50X1
GMRS50X1_fp = "NC1802"
GMRS50X1_fp1 = "NC1932"

# special var to know when we found a BTECH Gen 3
BTECH3 = [UV2501G3_fp, UV2501_220G3_fp, UV5001G3_fp]


# WACCOM Mini-8900
MINI8900_fp = "M28854"


# QYT KT-UV980
KTUV980_fp = "H28854"

# QYT KT8900
KT8900_fp = "M29154"
# New generations KT8900
KT8900_fp1 = "M2C234"
KT8900_fp2 = "M2G1F4"
KT8900_fp3 = "M2G2F4"
KT8900_fp4 = "M2G304"
KT8900_fp5 = "M2G314"
KT8900_fp6 = "M2G424"
KT8900_fp7 = "M27184"
# this radio has an extra ID
KT8900_id = "303688"
# another extra ID in sep/2021
KT8900_id2 = "\x05\x58\x3d\xf0\x10"

# KT8900R
KT8900R_fp = "M3G1F4"
# Second Generation
KT8900R_fp1 = "M3G214"
# another model
KT8900R_fp2 = "M3C234"
# another model G4?
KT8900R_fp3 = "M39164"
# another model
KT8900R_fp4 = "M3G314"
# this radio has an extra ID
KT8900R_id = "280528"
# another extra ID in dec/2018
KT8900R_id2 = "\x05\x58\x3d\xf0\x10"

# KT7900D (quad band)
KT7900D_fp = "VC4004"
KT7900D_fp1 = "VC4284"
KT7900D_fp2 = "VC4264"
KT7900D_fp3 = "VC4114"
KT7900D_fp4 = "VC4104"
KT7900D_fp5 = "VC4254"
KT7900D_fp6 = "VC5264"
KT7900D_fp7 = "VC9204"

# QB25 (quad band) - a clone of KT7900D
QB25_fp = "QB-25"

# KT8900D (dual band)
KT8900D_fp = "VC2002"
KT8900D_fp1 = "VC8632"
KT8900D_fp2 = "VC3402"
KT8900D_fp3 = "VC7062"

# LUITON LT-588UV
LT588UV_fp = "V2G1F4"
# Added by rstrickoff gen 2 id
LT588UV_fp1 = "V2G214"

# QYT KT-8R (quad band ht)
KT8R_fp = "MCB264"
KT8R_fp1 = "MCB284"
KT8R_fp2 = "MC5264"

# QYT KT5800 (dual band)
KT5800_fp = "VCB222"

# QYT KT980Plus (dual band)
KT980PLUS_fp = "VC2002"
KT980PLUS_fp1 = "VC6042"

# Radioddity DB25-G (gmrs)
DB25G_fp = "VC6182"
DB25G_fp1 = "VC7062"


# ### MAGICS
# for the Waccom Mini-8900
MSTRING_MINI8900 = "\x55\xA5\xB5\x45\x55\x45\x4d\x02"
# for the B-TECH UV-2501+220 (including pre production ones)
MSTRING_220 = "\x55\x20\x15\x12\x12\x01\x4d\x02"
# for the QYT KT8900 & R
MSTRING_KT8900 = "\x55\x20\x15\x09\x16\x45\x4D\x02"
MSTRING_KT8900R = "\x55\x20\x15\x09\x25\x01\x4D\x02"
# magic string for all other models
MSTRING = "\x55\x20\x15\x09\x20\x45\x4d\x02"
# for the QYT KT7900D & KT8900D
MSTRING_KT8900D = "\x55\x20\x16\x08\x01\xFF\xDC\x02"
# for the BTECH UV-25X2 and UV-50X2
MSTRING_UV25X2 = "\x55\x20\x16\x12\x28\xFF\xDC\x02"
# for the BTECH UV-25X4
MSTRING_UV25X4 = "\x55\x20\x16\x11\x18\xFF\xDC\x02"
# for the BTECH GMRS-50X1
MSTRING_GMRS50X1 = "\x55\x20\x18\x10\x18\xFF\xDC\x02"
# for the QYT KT-8R
MSTRING_KT8R = "\x55\x20\x17\x07\x03\xFF\xDC\x02"


def _clean_buffer(radio):
"""Cleaning the read serial buffer, hard timeout to survive an infinite
data stream"""

# touching the serial timeout to optimize the flushing
# restored at the end to the default value
radio.pipe.timeout = 0.1
dump = "1"
datacount = 0

try:
while len(dump) > 0:
dump = radio.pipe.read(100)
datacount += len(dump)
# hard limit to survive a infinite serial data stream
# 5 times bigger than a normal rx block (69 bytes)
if datacount > 345:
seriale = "Please check your serial port selection."
raise errors.RadioError(seriale)

# restore the default serial timeout
radio.pipe.timeout = STIMEOUT

except Exception:
raise errors.RadioError("Unknown error cleaning the serial buffer")


def _rawrecv(radio, amount):
"""Raw read from the radio device, less intensive way"""

data = ""

try:
data = radio.pipe.read(amount)

# DEBUG
if debug is True:
LOG.debug("<== (%d) bytes:\n\n%s" %
(len(data), util.hexprint(data)))

# fail if no data is received
if len(data) == 0:
raise errors.RadioError("No data received from radio")

# notice on the logs if short
if len(data) < amount:
LOG.warn("Short reading %d bytes from the %d requested." %
(len(data), amount))

except:
raise errors.RadioError("Error reading data from radio")

return data


def _send(radio, data):
"""Send data to the radio device"""

try:
for byte in data:
radio.pipe.write(byte)
# Some OS (mainly Linux ones) are too fast on the serial and
# get the MCU inside the radio stuck in the early stages, this
# hits some models more than others.
#
# To cope with that we introduce a delay on the writes.
# Many option have been tested (delaying only after error occures,
# after short reads, only for linux, ...)
# Finally, a static delay was chosen as simplest of all solutions
# (Michael Wagner, OE4AMW)
# (for details, see issue 3993)
sleep(0.002)

# DEBUG
if debug is True:
LOG.debug("==> (%d) bytes:\n\n%s" %
(len(data), util.hexprint(data)))
except:
raise errors.RadioError("Error sending data to radio")


def _make_frame(cmd, addr, length, data=""):
"""Pack the info in the headder format"""
frame = "\x06" + struct.pack(">BHB", ord(cmd), addr, length)
# add the data if set
if len(data) != 0:
frame += data

return frame


def _recv(radio, addr):
"""Get data from the radio all at once to lower syscalls load"""

# Get the full 69 bytes at a time to reduce load
# 1 byte ACK + 4 bytes header + 64 bytes of data (BLOCK_SIZE)

# get the whole block
block = _rawrecv(radio, BLOCK_SIZE + 5)

# basic check
if len(block) < (BLOCK_SIZE + 5):
raise errors.RadioError("Short read of the block 0x%04x" % addr)

# checking for the ack
if block[0] != ACK_CMD:
raise errors.RadioError("Bad ack from radio in block 0x%04x" % addr)

# header validation
c, a, l = struct.unpack(">BHB", block[1:5])
if a != addr or l != BLOCK_SIZE or c != ord("X"):
LOG.debug("Invalid header for block 0x%04x" % addr)
LOG.debug("CMD: %s ADDR: %04x SIZE: %02x" % (c, a, l))
raise errors.RadioError("Invalid header for block 0x%04x:" % addr)

# return the data
return block[5:]


def _start_clone_mode(radio, status):
"""Put the radio in clone mode and get the ident string, 3 tries"""

# cleaning the serial buffer
_clean_buffer(radio)

# prep the data to show in the UI
status.cur = 0
status.msg = "Identifying the radio..."
status.max = 3
radio.status_fn(status)

try:
for a in range(0, status.max):
# Update the UI
status.cur = a + 1
radio.status_fn(status)

# send the magic word
_send(radio, radio._magic)

# Now you get a x06 of ACK if all goes well
ack = radio.pipe.read(1)

if ack == "\x06":
# DEBUG
LOG.info("Magic ACK received")
status.cur = status.max
radio.status_fn(status)

return True

return False

except errors.RadioError:
raise
except Exception, e:
raise errors.RadioError("Error sending Magic to radio:\n%s" % e)


def _do_ident(radio, status, upload=False):
"""Put the radio in PROGRAM mode & identify it"""
# set the serial discipline
radio.pipe.baudrate = 9600
radio.pipe.parity = "N"

# open the radio into program mode
if _start_clone_mode(radio, status) is False:
msg = "Radio did not enter clone mode"
# warning about old versions of QYT KT8900
if radio.MODEL == "KT8900":
msg += ". You may want to try it as a WACCOM MINI-8900, there is a"
msg += " known variant of this radios that is a clone of it."
raise errors.RadioError(msg)

# Ok, get the ident string
ident = _rawrecv(radio, 49)

# basic check for the ident
if len(ident) != 49:
raise errors.RadioError("Radio send a short ident block.")

# check if ident is OK
itis = False
for fp in radio._fileid:
if fp in ident:
# got it!
itis = True
# checking if we are dealing with a Gen 3 BTECH
if radio.VENDOR == "BTECH" and fp in BTECH3:
radio.btech3 = True

break

if itis is False:
LOG.debug("Incorrect model ID, got this:\n\n" + util.hexprint(ident))
raise errors.RadioError("Radio identification failed.")

# some radios needs a extra read and check for a code on it, this ones
# has the check value in the _id2 var, others simply False
if radio._id2 is not False:
# lower the timeout here as this radios are reseting due to timeout
radio.pipe.timeout = 0.05

# query & receive the extra ID
_send(radio, _make_frame("S", 0x3DF0, 16))
id2 = _rawrecv(radio, 21)

# WARNING !!!!!!
# different radios send a response with a different amount of data
# it seems that it's padded with \xff, \x20 and some times with \x00
# we just care about the first 16, our magic string is in there
if len(id2) < 16:
raise errors.RadioError("The extra ID is short, aborting.")

# ok, the correct string must be in the received data
# the radio._id2 var will be always a list
flag2 = False
for _id2 in radio._id2:
if _id2 in id2:
flag2 = True

if not flag2:
LOG.debug("Full *BAD* extra ID on the %s is: \n%s" %
(radio.MODEL, util.hexprint(id2)))
raise errors.RadioError("The extra ID is wrong, aborting.")

# this radios need a extra request/answer here on the upload
# the amount of data received depends of the radio type
#
# also the first block of TX must no have the ACK at the beginning
# see _upload for this.
if upload is True:
# send an ACK
_send(radio, ACK_CMD)

# the amount of data depend on the radio, so far we have two radios
# reading two bytes with an ACK at the end and just ONE with just
# one byte (QYT KT8900)
# the JT-6188 appears a clone of the last, but reads TWO bytes.
#
# we will read two bytes with a custom timeout to not penalize the
# users for this.
#
# we just check for a response and last byte being a ACK, that is
# the common stone for all radios (3 so far)
ack = _rawrecv(radio, 2)

# checking
if len(ack) == 0 or ack[-1:] != ACK_CMD:
raise errors.RadioError("Radio didn't ACK the upload")

# restore the default serial timeout
radio.pipe.timeout = STIMEOUT

# DEBUG
LOG.info("Positive ident, this is a %s %s" % (radio.VENDOR, radio.MODEL))

return True


def _download(radio):
"""Get the memory map"""

# UI progress
status = chirp_common.Status()

# put radio in program mode and identify it
_do_ident(radio, status)

# the models that doesn't have the extra ID have to make a dummy read here
if radio._id2 is False:
_send(radio, _make_frame("S", 0, BLOCK_SIZE))
discard = _rawrecv(radio, BLOCK_SIZE + 5)

if debug is True:
LOG.info("Dummy first block read done, got this:\n\n %s",
util.hexprint(discard))

# reset the progress bar in the UI
status.max = MEM_SIZE / BLOCK_SIZE
status.msg = "Cloning from radio..."
status.cur = 0
radio.status_fn(status)

# cleaning the serial buffer
_clean_buffer(radio)

data = ""
for addr in range(0, MEM_SIZE, BLOCK_SIZE):
# sending the read request
_send(radio, _make_frame("S", addr, BLOCK_SIZE))

# read
d = _recv(radio, addr)

# aggregate the data
data += d

# UI Update
status.cur = addr / BLOCK_SIZE
status.msg = "Cloning from radio..."
radio.status_fn(status)

return data


def _upload(radio):
"""Upload procedure"""

# The UPLOAD mem is restricted to lower than 0x3100,
# so we will overide that here localy
MEM_SIZE = radio.UPLOAD_MEM_SIZE

# UI progress
status = chirp_common.Status()

# put radio in program mode and identify it
_do_ident(radio, status, True)

# get the data to upload to radio
data = radio.get_mmap()

# Reset the UI progress
status.max = MEM_SIZE / TX_BLOCK_SIZE
status.cur = 0
status.msg = "Cloning to radio..."
radio.status_fn(status)

# the radios that doesn't have the extra ID 'may' do a dummy write, I found
# that leveraging the bad ACK and NOT doing the dummy write is ok, as the
# dummy write is accepted (it actually writes to the mem!) by the radio.

# cleaning the serial buffer
_clean_buffer(radio)

# the fun start here
for addr in range(0x3C90, 0x3C9F, TX_BLOCK_SIZE): # set band limits for KT-8900 and similar radios only
# getting the block of data to send
d = data[addr:addr + TX_BLOCK_SIZE]

# build the frame to send
frame = _make_frame("X", addr, TX_BLOCK_SIZE, d)

# first block must not send the ACK at the beginning for the
# ones that has the extra id, since this have to do a extra step
if addr == 0 and radio._id2 is not False:
frame = frame[1:]

# send the frame
_send(radio, frame)

# receiving the response
ack = _rawrecv(radio, 1)

# basic check
if len(ack) != 1:
raise errors.RadioError("No ACK when writing block 0x%04x" % addr)

if ack not in "\x06\x05":
raise errors.RadioError("Bad ACK writing block 0x%04x:" % addr)

# UI Update
status.cur = addr / TX_BLOCK_SIZE
status.msg = "Cloning to radio..."
radio.status_fn(status)


def model_match(cls, data):
"""Match the opened/downloaded image to the correct version"""
rid = data[0x3f70:0x3f76]

if rid in cls._fileid:
return True

return False


def _decode_ranges(low, high):
"""Unpack the data in the ranges zones in the memmap and return
a tuple with the integer corresponding to the Mhz it means"""
ilow = int(low[0]) * 100 + int(low[1]) * 10 + int(low[2])
ihigh = int(high[0]) * 100 + int(high[1]) * 10 + int(high[2])
ilow *= 1000000
ihigh *= 1000000

return (ilow, ihigh)


def _split(rf, f1, f2):
"""Returns False if the two freqs are in the same band (no split)
or True otherwise"""

# determine if the two freqs are in the same band
for low, high in rf.valid_bands:
if f1 >= low and f1 <= high and \
f2 >= low and f2 <= high:
# if the two freqs are on the same Band this is not a split
return False

# if you get here is because the freq pairs are split
return True


class BTechMobileCommon(chirp_common.CloneModeRadio,
chirp_common.ExperimentalRadio):
"""BTECH's UV-5001 and alike radios"""
VENDOR = "BTECH"
MODEL = ""
IDENT = ""
BANDS = 2
COLOR_LCD = False
COLOR_LCD2 = False
COLOR_LCD3 = False
NAME_LENGTH = 6
UPLOAD_MEM_SIZE = 0X3100
_power_levels = [chirp_common.PowerLevel("High", watts=25),
chirp_common.PowerLevel("Low", watts=10)]
_vhf_range = (130000000, 180000000)
_220_range = (200000000, 271000000)
_uhf_range = (400000000, 521000000)
_350_range = (350000000, 391000000)
_upper = 199
_magic = MSTRING
_fileid = None
_id2 = False
btech3 = False
_gmrs = False

@classmethod
def get_prompts(cls):
rp = chirp_common.RadioPrompts()
rp.experimental = \
('This driver is experimental.\n'
'\n'
'Please keep a copy of your memories with the original software '
'if you treasure them, this driver is new and may contain'
' bugs.\n'
'\n'
)
rp.pre_download = _(dedent("""\
Follow these instructions to download your info:

1 - Turn off your radio
2 - Connect your interface cable
3 - Turn on your radio
4 - Do the download of your radio data

"""))
rp.pre_upload = _(dedent("""\
Follow these instructions to upload your info:

1 - Turn off your radio
2 - Connect your interface cable
3 - Turn on your radio
4 - Do the upload of your radio data

"""))
return rp

def get_features(self):
"""Get the radio's features"""

# we will use the following var as global
global POWER_LEVELS

rf = chirp_common.RadioFeatures()
rf.has_settings = False
rf.has_bank = False
rf.has_tuning_step = False
rf.can_odd_split = True
rf.has_name = True
rf.has_offset = True
rf.has_mode = True
rf.has_dtcs = True
rf.has_rx_dtcs = True
rf.has_dtcs_polarity = True
rf.has_ctone = True
rf.has_cross = True
rf.valid_modes = MODES
rf.valid_characters = VALID_CHARS
rf.valid_name_length = self.NAME_LENGTH
rf.valid_duplexes = ["", "-", "+", "split", "off"]
rf.valid_tmodes = ['', 'Tone', 'TSQL', 'DTCS', 'Cross']
rf.valid_cross_modes = [
"Tone->Tone",
"DTCS->",
"->DTCS",
"Tone->DTCS",
"DTCS->Tone",
"->Tone",
"DTCS->DTCS"]
rf.valid_skips = SKIP_VALUES
rf.valid_dtcs_codes = DTCS
rf.valid_tuning_steps = STEPS
rf.memory_bounds = (0, self._upper)

# power levels
POWER_LEVELS = self._power_levels
rf.valid_power_levels = POWER_LEVELS

# normal dual bands
rf.valid_bands = [self._vhf_range, self._uhf_range]

# 220 band
if self.BANDS == 3 or self.BANDS == 4:
rf.valid_bands.append(self._220_range)

# 350 band
if self.BANDS == 4:
rf.valid_bands.append(self._350_range)

return rf

def validate_memory(self, mem):
msgs = chirp_common.CloneModeRadio.validate_memory(self, mem)

_msg_duplex1 = 'Memory location only supports "Low"'
_msg_duplex2 = 'Memory location only supports "off"'
_msg_duplex3 = 'Memory location only supports "(None)", "+" or "off"'

if self._gmrs:
if mem.number < 1 or mem.number > 30:
if float(mem.freq) / 1000000 in GMRS_FREQS1:
if mem.duplex not in ['', 'off']:
# warn user wrong Duplex
msgs.append(chirp_common.ValidationError(_msg_duplex2))
if mem.power != self._power_levels[2]:
# warn user wrong Duplex
msgs.append(chirp_common.ValidationError(_msg_duplex1))

if float(mem.freq) / 1000000 in GMRS_FREQS2:
if mem.duplex not in ['off', ]:
# warn user wrong Duplex
msgs.append(chirp_common.ValidationError(_msg_duplex2))

if float(mem.freq) / 1000000 in GMRS_FREQS3:
if mem.duplex not in ['', '+', 'off']:
# warn user wrong Duplex
msgs.append(chirp_common.ValidationError(_msg_duplex3))

return msgs

def sync_in(self):
"""Download from radio"""
data = _download(self)
self._mmap = memmap.MemoryMap(data)
self.process_mmap()

def sync_out(self):
"""Upload to radio"""
try:
_upload(self)
except errors.RadioError:
raise
except Exception, e:
raise errors.RadioError("Error: %s" % e)

def get_raw_memory(self, number):
return repr(self._memobj.memory[number])

def _decode_tone(self, val):
"""Parse the tone data to decode from mem, it returns:
Mode (''|DTCS|Tone), Value (None|###), Polarity (None,N,R)"""
pol = None

if val in [0, 65535]:
return '', None, None
elif val > 0x0258:
a = val / 10.0
return 'Tone', a, pol
else:
if val > 0x69:
index = val - 0x6A
pol = "R"
else:
index = val - 1
pol = "N"

tone = DTCS[index]
return 'DTCS', tone, pol

def _encode_tone(self, memval, mode, val, pol):
"""Parse the tone data to encode from UI to mem"""
if mode == '' or mode is None:
memval.set_raw("\x00\x00")
elif mode == 'Tone':
memval.set_value(val * 10)
elif mode == 'DTCS':
# detect the index in the DTCS list
try:
index = DTCS.index(val)
if pol == "N":
index += 1
else:
index += 0x6A
memval.set_value(index)
except:
msg = "Digital Tone '%d' is not supported" % value
LOG.error(msg)
raise errors.RadioError(msg)
else:
msg = "Internal error: invalid mode '%s'" % mode
LOG.error(msg)
raise errors.InvalidDataError(msg)

def get_memory(self, number):
"""Get the mem representation from the radio image"""
_mem = self._memobj.memory[number]
_names = self._memobj.names[number]

# Create a high-level memory object to return to the UI
mem = chirp_common.Memory()

# Memory number
mem.number = number

if _mem.get_raw()[0] == "\xFF":
mem.empty = True
return mem

# Freq and offset
mem.freq = int(_mem.rxfreq) * 10
# tx freq can be blank
if _mem.get_raw()[4] == "\xFF":
# TX freq not set
mem.offset = 0
mem.duplex = "off"
else:
# TX freq set
offset = (int(_mem.txfreq) * 10) - mem.freq
if offset != 0:
if _split(self.get_features(), mem.freq, int(
_mem.txfreq) * 10):
mem.duplex = "split"
mem.offset = int(_mem.txfreq) * 10
elif offset < 0:
mem.offset = abs(offset)
mem.duplex = "-"
elif offset > 0:
mem.offset = offset
mem.duplex = "+"
else:
mem.offset = 0

# name TAG of the channel
mem.name = str(_names.name).rstrip("\xFF").replace("\xFF", " ")

# power
mem.power = POWER_LEVELS[int(_mem.power)]

# wide/narrow
mem.mode = MODES[int(_mem.wide)]

# skip
mem.skip = SKIP_VALUES[_mem.add]

# tone data
rxtone = txtone = None
txtone = self._decode_tone(_mem.txtone)
rxtone = self._decode_tone(_mem.rxtone)
chirp_common.split_tone_decode(mem, txtone, rxtone)

# Extra
mem.extra = RadioSettingGroup("extra", "Extra")

if not self.COLOR_LCD or \
(self.COLOR_LCD and not self.VENDOR == "BTECH"):
scramble = RadioSetting("scramble", "Scramble",
RadioSettingValueBoolean(bool(
_mem.scramble)))
mem.extra.append(scramble)

bcl = RadioSetting("bcl", "Busy channel lockout",
RadioSettingValueBoolean(bool(_mem.bcl)))
mem.extra.append(bcl)

pttid = RadioSetting("pttid", "PTT ID",
RadioSettingValueList(PTTID_LIST,
PTTID_LIST[_mem.pttid]))
mem.extra.append(pttid)

# validating scode
scode = _mem.scode if _mem.scode != 15 else 0
pttidcode = RadioSetting("scode", "PTT ID signal code",
RadioSettingValueList(
PTTIDCODE_LIST,
PTTIDCODE_LIST[scode]))
mem.extra.append(pttidcode)

optsig = RadioSetting("optsig", "Optional signaling",
RadioSettingValueList(
OPTSIG_LIST,
OPTSIG_LIST[_mem.optsig]))
mem.extra.append(optsig)

spmute = RadioSetting("spmute", "Speaker mute",
RadioSettingValueList(
SPMUTE_LIST,
SPMUTE_LIST[_mem.spmute]))
mem.extra.append(spmute)

return mem

def set_memory(self, mem):
"""Set the memory data in the eeprom img from the UI"""
# get the eprom representation of this channel
_mem = self._memobj.memory[mem.number]
_names = self._memobj.names[mem.number]

mem_was_empty = False
# same method as used in get_memory for determining if mem is empty
# doing this BEFORE overwriting it with new values ...
if _mem.get_raw()[0] == "\xFF":
LOG.debug("This mem was empty before")
mem_was_empty = True

# if empty memmory
if mem.empty:
# the channel itself
_mem.set_raw("\xFF" * 16)
# the name tag
_names.set_raw("\xFF" * 16)
return

if mem_was_empty:
# Zero the whole memory if we're making it unempty for
# the first time
LOG.debug('Zeroing new memory')
_mem.set_raw('\x00' * 16)

if self._gmrs:
if mem.number >= 1 and mem.number <= 30:
GMRS_FREQ = int(GMRS_FREQS[mem.number - 1] * 1000000)
mem.freq = GMRS_FREQ
if mem.number <= 22:
mem.duplex = ''
mem.offset = 0
if mem.number <= 7:
mem.power = self._power_levels[2]
if mem.number >= 8 and mem.number <= 14:
mem.duplex = 'off'
mem.mode = "NFM"
mem.power = self._power_levels[2]
if mem.number > 22:
mem.duplex = '+'
mem.offset = 5000000
elif float(mem.freq) / 1000000 in GMRS_FREQS:
if float(mem.freq) / 1000000 in GMRS_FREQS1:
mem.duplex = ''
mem.offset = 0
mem.power = self._power_levels[2]
if float(mem.freq) / 1000000 in GMRS_FREQS2:
mem.duplex = 'off'
mem.offset = 0
mem.mode = "NFM"
mem.power = self._power_levels[2]
if float(mem.freq) / 1000000 in GMRS_FREQS3:
if mem.duplex == '+':
mem.offset = 5000000
else:
mem.offset = 0
else:
mem.duplex = 'off'
mem.offset = 0

# frequency
_mem.rxfreq = mem.freq / 10

# duplex
if mem.duplex == "+":
_mem.txfreq = (mem.freq + mem.offset) / 10
elif mem.duplex == "-":
_mem.txfreq = (mem.freq - mem.offset) / 10
elif mem.duplex == "off":
for i in _mem.txfreq:
i.set_raw("\xFF")
elif mem.duplex == "split":
_mem.txfreq = mem.offset / 10
else:
_mem.txfreq = mem.freq / 10

# tone data
((txmode, txtone, txpol), (rxmode, rxtone, rxpol)) = \
chirp_common.split_tone_encode(mem)
self._encode_tone(_mem.txtone, txmode, txtone, txpol)
self._encode_tone(_mem.rxtone, rxmode, rxtone, rxpol)

# name TAG of the channel
if len(mem.name) < self.NAME_LENGTH:
# we must pad to self.NAME_LENGTH chars, " " = "\xFF"
mem.name = str(mem.name).ljust(self.NAME_LENGTH, " ")
_names.name = str(mem.name).replace(" ", "\xFF")

# power, # default power level is high
_mem.power = 0 if mem.power is None else POWER_LEVELS.index(mem.power)

# wide/narrow
_mem.wide = MODES.index(mem.mode)

# scan add property
_mem.add = SKIP_VALUES.index(mem.skip)

# reseting unknowns, this have to be set by hand
_mem.unknown0 = 0
_mem.unknown1 = 0
_mem.unknown2 = 0
_mem.unknown3 = 0
_mem.unknown4 = 0
_mem.unknown5 = 0
_mem.unknown6 = 0

def _zero_settings():
_mem.spmute = 0
_mem.optsig = 0
_mem.scramble = 0
_mem.bcl = 0
_mem.pttid = 0
_mem.scode = 0

if self.COLOR_LCD and _mem.scramble:
LOG.info('Resetting scramble bit for BTECH COLOR_LCD variant')
_mem.scramble = 0

# extra settings
if len(mem.extra) > 0:
# there are setting, parse
LOG.debug("Extra-Setting supplied. Setting them.")
# Zero them all first so any not provided by model don't
# stay set
_zero_settings()
for setting in mem.extra:
setattr(_mem, setting.get_name(), setting.value)
else:
if mem.empty:
LOG.debug("New mem is empty.")
else:
LOG.debug("New mem is NOT empty")
# set extra-settings to default ONLY when apreviously empty or
# deleted memory was edited to prevent errors such as #4121
if mem_was_empty:
LOG.debug("old mem was empty. Setting default for extras.")
_zero_settings()

return mem

def set_settings(self, settings):
_settings = self._memobj.settings
for element in settings:
if not isinstance(element, RadioSetting):
if element.get_name() == "fm_preset":
self._set_fm_preset(element)
else:
self.set_settings(element)
continue
else:
try:
name = element.get_name()
if "." in name:
bits = name.split(".")
obj = self._memobj
for bit in bits[:-1]:
if "/" in bit:
bit, index = bit.split("/", 1)
index = int(index)
obj = getattr(obj, bit)[index]
else:
obj = getattr(obj, bit)
setting = bits[-1]
else:
obj = _settings
setting = element.get_name()

if element.has_apply_callback():
LOG.debug("Using apply callback")
element.run_apply_callback()
elif element.value.get_mutable():
LOG.debug("Setting %s = %s" % (setting, element.value))
setattr(obj, setting, element.value)
except Exception, e:
LOG.debug(element.get_name())
raise

@classmethod
def match_model(cls, filedata, filename):
match_size = False
match_model = False

# testing the file data size
if len(filedata) == MEM_SIZE:
match_size = True

# testing the firmware model fingerprint
match_model = model_match(cls, filedata)

if match_size and match_model:
return True
else:
return False


MEM_FORMAT = """
#seekto 0x0000;
struct {
lbcd rxfreq[4];
lbcd txfreq[4];
ul16 rxtone;
ul16 txtone;
u8 unknown0:4,
scode:4;
u8 unknown1:2,
spmute:2,
unknown2:2,
optsig:2;
u8 unknown3:3,
scramble:1,
unknown4:3,
power:1;
u8 unknown5:1,
wide:1,
unknown6:2,
bcl:1,
add:1,
pttid:2;
} memory[200];

#seekto 0x0E00;
struct {
u8 tdr;
u8 unknown1;
u8 sql;
u8 unknown2[2];
u8 tot;
u8 apo; // BTech radios use this as the Auto Power Off time
// other radios use this as pre-Time Out Alert
u8 unknown3;
u8 abr;
u8 beep;
u8 unknown4[4];
u8 dtmfst;
u8 unknown5[2];
u8 prisc;
u8 prich;
u8 screv;
u8 unknown6[2];
u8 pttid;
u8 pttlt;
u8 unknown7;
u8 emctp;
u8 emcch;
u8 ringt;
u8 unknown8;
u8 camdf;
u8 cbmdf;
u8 sync; // BTech radios use this as the display sync setting
// other radios use this as the auto keypad lock setting
u8 ponmsg;
u8 wtled;
u8 rxled;
u8 txled;
u8 unknown9[5];
u8 anil;
u8 reps;
u8 repm;
u8 tdrab;
u8 ste;
u8 rpste;
u8 rptdl;
u8 mgain;
u8 dtmfg;
} settings;

#seekto 0x0E80;
struct {
u8 unknown1;
u8 vfomr;
u8 keylock;
u8 unknown2;
u8 unknown3:4,
vfomren:1,
unknown4:1,
reseten:1,
menuen:1;
u8 unknown5[11];
u8 dispab;
u8 mrcha;
u8 mrchb;
u8 menu;
} settings2;

#seekto 0x0EC0;
struct {
char line1[6];
char line2[6];
} poweron_msg;

struct settings_vfo {
u8 freq[8];
u8 offset[6];
u8 unknown2[2];
ul16 rxtone;
ul16 txtone;
u8 scode;
u8 spmute;
u8 optsig;
u8 scramble;
u8 wide;
u8 power;
u8 shiftd;
u8 step;
u8 unknown3[4];
};

#seekto 0x0F00;
struct {
struct settings_vfo a;
struct settings_vfo b;
} vfo;

#seekto 0x1000;
struct {
char name[6];
u8 unknown1[10];
} names[200];

#seekto 0x2400;
struct {
u8 period; // one out of LIST_5TONE_STANDARD_PERIODS
u8 group_tone;
u8 repeat_tone;
u8 unused[13];
} _5tone_std_settings[15];

#seekto 0x2500;
struct {
u8 frame1[5];
u8 frame2[5];
u8 frame3[5];
u8 standard; // one out of LIST_5TONE_STANDARDS
} _5tone_codes[15];

#seekto 0x25F0;
struct {
u8 _5tone_delay1; // * 10ms
u8 _5tone_delay2; // * 10ms
u8 _5tone_delay3; // * 10ms
u8 _5tone_first_digit_ext_length;
u8 unknown1;
u8 unknown2;
u8 unknown3;
u8 unknown4;
u8 decode_standard;
u8 unknown5:5,
_5tone_decode_call_frame3:1,
_5tone_decode_call_frame2:1,
_5tone_decode_call_frame1:1;
u8 unknown6:5,
_5tone_decode_disp_frame3:1,
_5tone_decode_disp_frame2:1,
_5tone_decode_disp_frame1:1;
u8 decode_reset_time; // * 100 + 100ms
} _5tone_settings;

#seekto 0x2900;
struct {
u8 code[16]; // 0=x0A, A=0x0D, B=0x0E, C=0x0F, D=0x00, #=0x0C *=0x0B
} dtmf_codes[15];

#seekto 0x29F0;
struct {
u8 dtmfspeed_on; //list with 50..2000ms in steps of 10
u8 dtmfspeed_off; //list with 50..2000ms in steps of 10
u8 unknown0[14];
u8 inspection[16];
u8 monitor[16];
u8 alarmcode[16];
u8 stun[16];
u8 kill[16];
u8 revive[16];
u8 unknown1[16];
u8 unknown2[16];
u8 unknown3[16];
u8 unknown4[16];
u8 unknown5[16];
u8 unknown6[16];
u8 unknown7[16];
u8 masterid[16];
u8 viceid[16];
u8 unused01:7,
mastervice:1;
u8 unused02:3,
mrevive:1,
mkill:1,
mstun:1,
mmonitor:1,
minspection:1;
u8 unused03:3,
vrevive:1,
vkill:1,
vstun:1,
vmonitor:1,
vinspection:1;
u8 unused04:6,
txdisable:1,
rxdisable:1;
u8 groupcode;
u8 spacecode;
u8 delayproctime; // * 100 + 100ms
u8 resettime; // * 100 + 100ms
} dtmf_settings;

#seekto 0x2D00;
struct {
struct {
ul16 freq1;
u8 unused01[6];
ul16 freq2;
u8 unused02[6];
} _2tone_encode[15];
u8 duration_1st_tone; // *10ms
u8 duration_2nd_tone; // *10ms
u8 duration_gap; // *10ms
u8 unused03[13];
struct {
struct {
u8 dec; // one out of LIST_2TONE_DEC
u8 response; // one out of LIST_2TONE_RESPONSE
u8 alert; // 1-16
} decs[4];
u8 unused04[4];
} _2tone_decode[15];
u8 unused05[16];

struct {
ul16 freqA;
ul16 freqB;
ul16 freqC;
ul16 freqD;
// unknown what those values mean, but they are
// derived from configured frequencies
ul16 derived_from_freqA; // 2304000/freqA
ul16 derived_from_freqB; // 2304000/freqB
ul16 derived_from_freqC; // 2304000/freqC
ul16 derived_from_freqD; // 2304000/freqD
}freqs[15];
u8 reset_time; // * 100 + 100ms - 100-8000ms
} _2tone;

#seekto 0x3000;
struct {
u8 freq[8];
char broadcast_station_name[6];
u8 unknown[2];
} fm_radio_preset[16];

#seekto 0x3C90;
struct {
u8 vhf_low[3];
u8 vhf_high[3];
u8 uhf_low[3];
u8 uhf_high[3];
} ranges;

// the UV-2501+220 & KT8900R has different zones for storing ranges

#seekto 0x3CD0;
struct {
u8 vhf_low[3];
u8 vhf_high[3];
u8 unknown1[4];
u8 unknown2[6];
u8 vhf2_low[3];
u8 vhf2_high[3];
u8 unknown3[4];
u8 unknown4[6];
u8 uhf_low[3];
u8 uhf_high[3];
} ranges220;

#seekto 0x3F70;
struct {
char fp[6];
} fingerprint;

"""


class BTech(BTechMobileCommon):
"""BTECH's UV-5001 and alike radios"""
BANDS = 2
COLOR_LCD = False
NAME_LENGTH = 6

def set_options(self):
"""This is to read the options from the image and set it in the
environment, for now just the limits of the freqs in the VHF/UHF
ranges"""

# setting the correct ranges for each radio type
if self.MODEL in ["UV-2501+220", "KT8900R"]:
# the model 2501+220 has a segment in 220
# and a different position in the memmap
# also the QYT KT8900R
ranges = self._memobj.ranges220
else:
ranges = self._memobj.ranges

# the normal dual bands
vhf = _decode_ranges(ranges.vhf_low, ranges.vhf_high)
uhf = _decode_ranges(ranges.uhf_low, ranges.uhf_high)

# DEBUG
LOG.info("Radio ranges: VHF %d to %d" % vhf)
LOG.info("Radio ranges: UHF %d to %d" % uhf)

# 220Mhz radios case
if self.MODEL in ["UV-2501+220", "KT8900R"]:
vhf2 = _decode_ranges(ranges.vhf2_low, ranges.vhf2_high)
LOG.info("Radio ranges: VHF(220) %d to %d" % vhf2)
self._220_range = vhf2

# set the class with the real data
self._vhf_range = vhf
self._uhf_range = uhf

def process_mmap(self):
"""Process the mem map into the mem object"""

# Get it
self._memobj = bitwise.parse(MEM_FORMAT, self._mmap)

# load specific parameters from the radio image
self.set_options()


# Declaring Aliases (Clones of the real radios)
class JT2705M(chirp_common.Alias):
VENDOR = "Jetstream"
MODEL = "JT2705M"


class JT6188Mini(chirp_common.Alias):
VENDOR = "Juentai"
MODEL = "JT-6188 Mini"


class JT6188Plus(chirp_common.Alias):
VENDOR = "Juentai"
MODEL = "JT-6188 Plus"


class SSGT890(chirp_common.Alias):
VENDOR = "Sainsonic"
MODEL = "GT-890"


class ZastoneMP300(chirp_common.Alias):
VENDOR = "Zastone"
MODEL = "MP-300"


# real radios
@directory.register
class UV2501(BTech):
"""Baofeng Tech UV2501"""
MODEL = "UV-2501"
_fileid = [UV2501G3_fp,
UV2501G2_fp,
UV2501pp2_fp,
UV2501pp_fp]


@directory.register
class UV2501_220(BTech):
"""Baofeng Tech UV2501+220"""
MODEL = "UV-2501+220"
BANDS = 3
_magic = MSTRING_220
_id2 = [UV2501_220pp_id, ]
_fileid = [UV2501_220G3_fp,
UV2501_220G2_fp,
UV2501_220_fp,
UV2501_220pp_fp]


@directory.register
class UV5001(BTech):
"""Baofeng Tech UV5001"""
MODEL = "UV-5001"
_fileid = [UV5001G3_fp,
UV5001G22_fp,
UV5001G2_fp,
UV5001alpha_fp,
UV5001pp_fp]
_power_levels = [chirp_common.PowerLevel("High", watts=50),
chirp_common.PowerLevel("Low", watts=10)]


@directory.register
class MINI8900(BTech):
"""WACCOM MINI-8900"""
VENDOR = "WACCOM"
MODEL = "MINI-8900"
_magic = MSTRING_MINI8900
_fileid = [MINI8900_fp, ]
# Clones
ALIASES = [JT6188Plus, ]


@directory.register
class KTUV980(BTech):
"""QYT KT-UV980"""
VENDOR = "QYT"
MODEL = "KT-UV980"
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_MINI8900
_fileid = [KTUV980_fp, ]
# Clones
ALIASES = [JT2705M, ]

# Please note that there is a version of this radios that is a clone of the
# Waccom Mini8900, maybe an early version?


class OTGRadioV1(chirp_common.Alias):
VENDOR = 'OTGSTUFF'
MODEL = 'OTG Radio v1'


@directory.register
class KT9800(BTech):
"""QYT KT8900"""
VENDOR = "QYT"
MODEL = "KT8900"
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900
_fileid = [KT8900_fp,
KT8900_fp1,
KT8900_fp2,
KT8900_fp3,
KT8900_fp4,
KT8900_fp5,
KT8900_fp6,
KT8900_fp7]
_id2 = [KT8900_id, KT8900_id2]
# Clones
ALIASES = [JT6188Mini, SSGT890, ZastoneMP300]


@directory.register
class KT9800R(BTech):
"""QYT KT8900R"""
VENDOR = "QYT"
MODEL = "KT8900R"
BANDS = 3
_vhf_range = (136000000, 175000000)
_220_range = (240000000, 271000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900R
_fileid = [KT8900R_fp,
KT8900R_fp1,
KT8900R_fp2,
KT8900R_fp3,
KT8900R_fp4]
_id2 = [KT8900R_id, KT8900R_id2]


@directory.register
class LT588UV(BTech):
"""LUITON LT-588UV"""
VENDOR = "LUITON"
MODEL = "LT-588UV"
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900
_fileid = [LT588UV_fp,
LT588UV_fp1]
_power_levels = [chirp_common.PowerLevel("High", watts=60),
chirp_common.PowerLevel("Low", watts=10)]


COLOR_MEM_FORMAT = """
#seekto 0x0000;
struct {
lbcd rxfreq[4];
lbcd txfreq[4];
ul16 rxtone;
ul16 txtone;
u8 unknown0:4,
scode:4;
u8 unknown1:2,
spmute:2,
unknown2:2,
optsig:2;
u8 unknown3:3,
scramble:1,
unknown4:2,
power:2;
u8 unknown5:1,
wide:1,
unknown6:2,
bcl:1,
add:1,
pttid:2;
} memory[200];

#seekto 0x0E00;
struct {
u8 tmr;
u8 unknown1;
u8 sql;
u8 unknown2;
u8 mgain2;
u8 tot;
u8 apo;
u8 unknown3;
u8 abr;
u8 beep;
u8 unknown4[4];
u8 dtmfst;
u8 unknown5[2];
u8 screv;
u8 unknown6[2];
u8 pttid;
u8 pttlt;
u8 unknown7;
u8 emctp;
u8 emcch;
u8 sigbp;
u8 unknown8;
u8 camdf;
u8 cbmdf;
u8 ccmdf;
u8 cdmdf;
u8 langua;
u8 sync; // BTech radios use this as the display sync
// setting, other radios use this as the auto
// keypad lock setting
u8 mainfc;
u8 mainbc;
u8 menufc;
u8 menubc;
u8 stafc;
u8 stabc;
u8 sigfc;
u8 sigbc;
u8 rxfc;
u8 txfc;
u8 txdisp;
u8 unknown9[5];
u8 anil;
u8 reps;
u8 repm;
u8 tmrmr;
u8 ste;
u8 rpste;
u8 rptdl;
u8 dtmfg;
u8 mgain; // used by db25-g for ponyey
u8 skiptx;
u8 scmode;
} settings;

#seekto 0x0E80;
struct {
u8 unknown1;
u8 vfomr;
u8 keylock;
u8 unknown2;
u8 unknown3:4,
vfomren:1,
unknown4:1,
reseten:1,
menuen:1;
u8 unknown5[11];
u8 dispab;
u8 unknown6[2];
u8 menu;
u8 unknown7[7];
u8 vfomra;
u8 vfomrb;
u8 vfomrc;
u8 vfomrd;
u8 mrcha;
u8 mrchb;
u8 mrchc;
u8 mrchd;
} settings2;

struct settings_vfo {
u8 freq[8];
u8 offset[6];
u8 unknown2[2];
ul16 rxtone;
ul16 txtone;
u8 scode;
u8 spmute;
u8 optsig;
u8 scramble;
u8 wide;
u8 power;
u8 shiftd;
u8 step;
u8 unknown3[4];
};

#seekto 0x0F00;
struct {
struct settings_vfo a;
struct settings_vfo b;
struct settings_vfo c;
struct settings_vfo d;
} vfo;

#seekto 0x0F80;
struct {
char line1[8];
char line2[8];
char line3[8];
char line4[8];
char line5[8];
char line6[8];
char line7[8];
char line8[8];
} poweron_msg;

#seekto 0x1000;
struct {
char name[8];
u8 unknown1[8];
} names[200];

#seekto 0x2400;
struct {
u8 period; // one out of LIST_5TONE_STANDARD_PERIODS
u8 group_tone;
u8 repeat_tone;
u8 unused[13];
} _5tone_std_settings[15];

#seekto 0x2500;
struct {
u8 frame1[5];
u8 frame2[5];
u8 frame3[5];
u8 standard; // one out of LIST_5TONE_STANDARDS
} _5tone_codes[15];

#seekto 0x25F0;
struct {
u8 _5tone_delay1; // * 10ms
u8 _5tone_delay2; // * 10ms
u8 _5tone_delay3; // * 10ms
u8 _5tone_first_digit_ext_length;
u8 unknown1;
u8 unknown2;
u8 unknown3;
u8 unknown4;
u8 decode_standard;
u8 unknown5:5,
_5tone_decode_call_frame3:1,
_5tone_decode_call_frame2:1,
_5tone_decode_call_frame1:1;
u8 unknown6:5,
_5tone_decode_disp_frame3:1,
_5tone_decode_disp_frame2:1,
_5tone_decode_disp_frame1:1;
u8 decode_reset_time; // * 100 + 100ms
} _5tone_settings;

#seekto 0x2900;
struct {
u8 code[16]; // 0=x0A, A=0x0D, B=0x0E, C=0x0F, D=0x00, #=0x0C *=0x0B
} dtmf_codes[15];

#seekto 0x29F0;
struct {
u8 dtmfspeed_on; //list with 50..2000ms in steps of 10
u8 dtmfspeed_off; //list with 50..2000ms in steps of 10
u8 unknown0[14];
u8 inspection[16];
u8 monitor[16];
u8 alarmcode[16];
u8 stun[16];
u8 kill[16];
u8 revive[16];
u8 unknown1[16];
u8 unknown2[16];
u8 unknown3[16];
u8 unknown4[16];
u8 unknown5[16];
u8 unknown6[16];
u8 unknown7[16];
u8 masterid[16];
u8 viceid[16];
u8 unused01:7,
mastervice:1;
u8 unused02:3,
mrevive:1,
mkill:1,
mstun:1,
mmonitor:1,
minspection:1;
u8 unused03:3,
vrevive:1,
vkill:1,
vstun:1,
vmonitor:1,
vinspection:1;
u8 unused04:6,
txdisable:1,
rxdisable:1;
u8 groupcode;
u8 spacecode;
u8 delayproctime; // * 100 + 100ms
u8 resettime; // * 100 + 100ms
} dtmf_settings;

#seekto 0x2D00;
struct {
struct {
ul16 freq1;
u8 unused01[6];
ul16 freq2;
u8 unused02[6];
} _2tone_encode[15];
u8 duration_1st_tone; // *10ms
u8 duration_2nd_tone; // *10ms
u8 duration_gap; // *10ms
u8 unused03[13];
struct {
struct {
u8 dec; // one out of LIST_2TONE_DEC
u8 response; // one out of LIST_2TONE_RESPONSE
u8 alert; // 1-16
} decs[4];
u8 unused04[4];
} _2tone_decode[15];
u8 unused05[16];

struct {
ul16 freqA;
ul16 freqB;
ul16 freqC;
ul16 freqD;
// unknown what those values mean, but they are
// derived from configured frequencies
ul16 derived_from_freqA; // 2304000/freqA
ul16 derived_from_freqB; // 2304000/freqB
ul16 derived_from_freqC; // 2304000/freqC
ul16 derived_from_freqD; // 2304000/freqD
}freqs[15];
u8 reset_time; // * 100 + 100ms - 100-8000ms
} _2tone;

#seekto 0x3D80;
struct {
u8 vhf_low[3];
u8 vhf_high[3];
u8 unknown1[4];
u8 unknown2[6];
u8 vhf2_low[3];
u8 vhf2_high[3];
u8 unknown3[4];
u8 unknown4[6];
u8 uhf_low[3];
u8 uhf_high[3];
u8 unknown5[4];
u8 unknown6[6];
u8 uhf2_low[3];
u8 uhf2_high[3];
} ranges;

#seekto 0x3F70;
struct {
char fp[6];
} fingerprint;

"""


class BTechColor(BTechMobileCommon):
"""BTECH's Color LCD Mobile and alike radios"""
COLOR_LCD = True
NAME_LENGTH = 8
LIST_TMR = LIST_TMR16

def process_mmap(self):
"""Process the mem map into the mem object"""

# Get it
self._memobj = bitwise.parse(COLOR_MEM_FORMAT, self._mmap)

# load specific parameters from the radio image
self.set_options()

def set_options(self):
"""This is to read the options from the image and set it in the
environment, for now just the limits of the freqs in the VHF/UHF
ranges"""

# setting the correct ranges for each radio type
ranges = self._memobj.ranges

# the normal dual bands
vhf = _decode_ranges(ranges.vhf_low, ranges.vhf_high)
uhf = _decode_ranges(ranges.uhf_low, ranges.uhf_high)

# DEBUG
LOG.info("Radio ranges: VHF %d to %d" % vhf)
LOG.info("Radio ranges: UHF %d to %d" % uhf)

# the additional bands
if self.MODEL in ["UV-25X4", "KT7900D"]:
# 200Mhz band
vhf2 = _decode_ranges(ranges.vhf2_low, ranges.vhf2_high)
LOG.info("Radio ranges: VHF(220) %d to %d" % vhf2)
self._220_range = vhf2

# 350Mhz band
uhf2 = _decode_ranges(ranges.uhf2_low, ranges.uhf2_high)
LOG.info("Radio ranges: UHF(350) %d to %d" % uhf2)
self._350_range = uhf2

# set the class with the real data
self._vhf_range = vhf
self._uhf_range = uhf


# Declaring Aliases (Clones of the real radios)
class SKT8900D(chirp_common.Alias):
VENDOR = "Surecom"
MODEL = "S-KT8900D"


class QB25(chirp_common.Alias):
VENDOR = "Radioddity"
MODEL = "QB25"


# real radios
@directory.register
class UV25X2(BTechColor):
"""Baofeng Tech UV25X2"""
MODEL = "UV-25X2"
BANDS = 2
_vhf_range = (130000000, 180000000)
_uhf_range = (400000000, 521000000)
_magic = MSTRING_UV25X2
_fileid = [UV25X2_fp, ]


@directory.register
class UV25X4(BTechColor):
"""Baofeng Tech UV25X4"""
MODEL = "UV-25X4"
BANDS = 4
_vhf_range = (130000000, 180000000)
_220_range = (200000000, 271000000)
_uhf_range = (400000000, 521000000)
_350_range = (350000000, 391000000)
_magic = MSTRING_UV25X4
_fileid = [UV25X4_fp, ]


@directory.register
class UV50X2(BTechColor):
"""Baofeng Tech UV50X2"""
MODEL = "UV-50X2"
BANDS = 2
_vhf_range = (130000000, 180000000)
_uhf_range = (400000000, 521000000)
_magic = MSTRING_UV25X2
_fileid = [UV50X2_fp, ]
_power_levels = [chirp_common.PowerLevel("High", watts=50),
chirp_common.PowerLevel("Low", watts=10)]


@directory.register
class KT7900D(BTechColor):
"""QYT KT7900D"""
VENDOR = "QYT"
MODEL = "KT7900D"
BANDS = 4
LIST_TMR = LIST_TMR15
_vhf_range = (136000000, 175000000)
_220_range = (200000000, 271000000)
_uhf_range = (400000000, 481000000)
_350_range = (350000000, 371000000)
_magic = MSTRING_KT8900D
_fileid = [KT7900D_fp, KT7900D_fp1, KT7900D_fp2, KT7900D_fp3, KT7900D_fp4,
KT7900D_fp5, KT7900D_fp6, KT7900D_fp7, QB25_fp, ]
# Clones
ALIASES = [SKT8900D, QB25, ]


@directory.register
class KT8900D(BTechColor):
"""QYT KT8900D"""
VENDOR = "QYT"
MODEL = "KT8900D"
BANDS = 2
LIST_TMR = LIST_TMR15
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900D
_fileid = [KT8900D_fp3, KT8900D_fp2, KT8900D_fp1, KT8900D_fp]

# Clones
ALIASES = [OTGRadioV1]


@directory.register
class KT5800(BTechColor):
"""QYT KT5800"""
VENDOR = "QYT"
MODEL = "KT5800"
BANDS = 2
LIST_TMR = LIST_TMR15
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900D
_fileid = [KT5800_fp, ]


@directory.register
class KT980PLUS(BTechColor):
"""QYT KT980PLUS"""
VENDOR = "QYT"
MODEL = "KT980PLUS"
BANDS = 2
LIST_TMR = LIST_TMR15
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900D
_fileid = [KT980PLUS_fp1, KT980PLUS_fp]
_power_levels = [chirp_common.PowerLevel("High", watts=75),
chirp_common.PowerLevel("Low", watts=55)]

@classmethod
def match_model(cls, filedata, filename):
# This model is only ever matched via metadata
return False


@directory.register
class DB25G(BTechColor):
"""Radioddity DB25-G"""
VENDOR = "Radioddity"
MODEL = "DB25-G"
BANDS = 2
LIST_TMR = LIST_TMR15
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 481000000)
_magic = MSTRING_KT8900D
_fileid = [DB25G_fp1, DB25G_fp]
_gmrs = True
_power_levels = [chirp_common.PowerLevel("High", watts=25),
chirp_common.PowerLevel("Mid", watts=15),
chirp_common.PowerLevel("Low", watts=5)]

@classmethod
def match_model(cls, filedata, filename):
# This model is only ever matched via metadata
return False


GMRS_MEM_FORMAT = """
#seekto 0x0000;
struct {
lbcd rxfreq[4];
lbcd txfreq[4];
ul16 rxtone;
ul16 txtone;
u8 unknown0:4,
scode:4;
u8 unknown1:2,
spmute:2,
unknown2:2,
optsig:2;
u8 unknown3:3,
scramble:1,
unknown4:2,
power:2;
u8 unknown5:1,
wide:1,
unknown6:2,
bcl:1,
add:1,
pttid:2;
} memory[256];

#seekto 0x1000;
struct {
char name[7];
u8 unknown1[9];
} names[256];

#seekto 0x2400;
struct {
u8 period; // one out of LIST_5TONE_STANDARD_PERIODS
u8 group_tone;
u8 repeat_tone;
u8 unused[13];
} _5tone_std_settings[15];

#seekto 0x2500;
struct {
u8 frame1[5];
u8 frame2[5];
u8 frame3[5];
u8 standard; // one out of LIST_5TONE_STANDARDS
} _5tone_codes[15];

#seekto 0x25F0;
struct {
u8 _5tone_delay1; // * 10ms
u8 _5tone_delay2; // * 10ms
u8 _5tone_delay3; // * 10ms
u8 _5tone_first_digit_ext_length;
u8 unknown1;
u8 unknown2;
u8 unknown3;
u8 unknown4;
u8 decode_standard;
u8 unknown5:5,
_5tone_decode_call_frame3:1,
_5tone_decode_call_frame2:1,
_5tone_decode_call_frame1:1;
u8 unknown6:5,
_5tone_decode_disp_frame3:1,
_5tone_decode_disp_frame2:1,
_5tone_decode_disp_frame1:1;
u8 decode_reset_time; // * 100 + 100ms
} _5tone_settings;

#seekto 0x2900;
struct {
u8 code[16]; // 0=x0A, A=0x0D, B=0x0E, C=0x0F, D=0x00, #=0x0C *=0x0B
} dtmf_codes[15];

#seekto 0x29F0;
struct {
u8 dtmfspeed_on; //list with 50..2000ms in steps of 10
u8 dtmfspeed_off; //list with 50..2000ms in steps of 10
u8 unknown0[14];
u8 inspection[16];
u8 monitor[16];
u8 alarmcode[16];
u8 stun[16];
u8 kill[16];
u8 revive[16];
u8 unknown1[16];
u8 unknown2[16];
u8 unknown3[16];
u8 unknown4[16];
u8 unknown5[16];
u8 unknown6[16];
u8 unknown7[16];
u8 masterid[16];
u8 viceid[16];
u8 unused01:7,
mastervice:1;
u8 unused02:3,
mrevive:1,
mkill:1,
mstun:1,
mmonitor:1,
minspection:1;
u8 unused03:3,
vrevive:1,
vkill:1,
vstun:1,
vmonitor:1,
vinspection:1;
u8 unused04:6,
txdisable:1,
rxdisable:1;
u8 groupcode;
u8 spacecode;
u8 delayproctime; // * 100 + 100ms
u8 resettime; // * 100 + 100ms
} dtmf_settings;

#seekto 0x2D00;
struct {
struct {
ul16 freq1;
u8 unused01[6];
ul16 freq2;
u8 unused02[6];
} _2tone_encode[15];
u8 duration_1st_tone; // *10ms
u8 duration_2nd_tone; // *10ms
u8 duration_gap; // *10ms
u8 unused03[13];
struct {
struct {
u8 dec; // one out of LIST_2TONE_DEC
u8 response; // one out of LIST_2TONE_RESPONSE
u8 alert; // 1-16
} decs[4];
u8 unused04[4];
} _2tone_decode[15];
u8 unused05[16];

struct {
ul16 freqA;
ul16 freqB;
ul16 freqC;
ul16 freqD;
// unknown what those values mean, but they are
// derived from configured frequencies
ul16 derived_from_freqA; // 2304000/freqA
ul16 derived_from_freqB; // 2304000/freqB
ul16 derived_from_freqC; // 2304000/freqC
ul16 derived_from_freqD; // 2304000/freqD
}freqs[15];
u8 reset_time; // * 100 + 100ms - 100-8000ms
} _2tone;

#seekto 0x3000;
struct {
u8 freq[8];
char broadcast_station_name[6];
u8 unknown[2];
} fm_radio_preset[16];

#seekto 0x3200;
struct {
u8 tmr;
u8 unknown1;
u8 sql;
u8 unknown2;
u8 autolk;
u8 tot;
u8 apo;
u8 unknown3;
u8 abr;
u8 beep;
u8 unknown4[4];
u8 dtmfst;
u8 unknown5[2];
u8 screv;
u8 unknown6[2];
u8 pttid;
u8 pttlt;
u8 unknown7;
u8 emctp;
u8 emcch;
u8 sigbp;
u8 unknown8;
u8 camdf;
u8 cbmdf;
u8 ccmdf;
u8 cdmdf;
u8 langua;
u8 sync;


u8 stfc;
u8 mffc;
u8 sfafc;
u8 sfbfc;
u8 sfcfc;
u8 sfdfc;
u8 subfc;
u8 fmfc;
u8 sigfc;
u8 modfc;
u8 menufc;
u8 txfc;
u8 txdisp;
u8 unknown9[5];
u8 anil;
u8 reps;
u8 repm;
u8 tmrmr;
u8 ste;
u8 rpste;
u8 rptdl;
u8 dtmfg;
u8 mgain;
u8 skiptx;
u8 scmode;
} settings;

#seekto 0x3280;
struct {
u8 unknown1;
u8 vfomr;
u8 keylock;
u8 unknown2;
u8 unknown3:4,
vfomren:1,
unknown4:1,
reseten:1,
menuen:1;
u8 unknown5[11];
u8 dispab;
u8 unknown6[2];
u8 smenu;
u8 unknown7[7];
u8 vfomra;
u8 vfomrb;
u8 vfomrc;
u8 vfomrd;
u8 mrcha;
u8 mrchb;
u8 mrchc;
u8 mrchd;
} settings2;

struct settings_vfo {
u8 freq[8];
u8 offset[6];
u8 unknown2[2];
ul16 rxtone;
ul16 txtone;
u8 scode;
u8 spmute;
u8 optsig;
u8 scramble;
u8 wide;
u8 power;
u8 shiftd;
u8 step;
u8 unknown3[4];
};

#seekto 0x3300;
struct {
struct settings_vfo a;
struct settings_vfo b;
struct settings_vfo c;
struct settings_vfo d;
} vfo;

#seekto 0x3D80;
struct {
u8 vhf_low[3];
u8 vhf_high[3];
u8 unknown1[4];
u8 unknown2[6];
u8 vhf2_low[3];
u8 vhf2_high[3];
u8 unknown3[4];
u8 unknown4[6];
u8 uhf_low[3];
u8 uhf_high[3];
u8 unknown5[4];
u8 unknown6[6];
u8 uhf2_low[3];
u8 uhf2_high[3];
} ranges;

#seekto 0x33B0;
struct {
char line[16];
} static_msg;

#seekto 0x3F70;
struct {
char fp[6];
} fingerprint;

"""


class BTechGMRS(BTechMobileCommon):
"""BTECH's GMRS Mobile"""
COLOR_LCD = True
COLOR_LCD2 = True
NAME_LENGTH = 7
UPLOAD_MEM_SIZE = 0X3400

def process_mmap(self):
"""Process the mem map into the mem object"""

# Get it
self._memobj = bitwise.parse(GMRS_MEM_FORMAT, self._mmap)

# load specific parameters from the radio image
self.set_options()

def set_options(self):
"""This is to read the options from the image and set it in the
environment, for now just the limits of the freqs in the VHF/UHF
ranges"""

# setting the correct ranges for each radio type
ranges = self._memobj.ranges

# the normal dual bands
vhf = _decode_ranges(ranges.vhf_low, ranges.vhf_high)
uhf = _decode_ranges(ranges.uhf_low, ranges.uhf_high)

# DEBUG
LOG.info("Radio ranges: VHF %d to %d" % vhf)
LOG.info("Radio ranges: UHF %d to %d" % uhf)

# set the class with the real data
self._vhf_range = vhf
self._uhf_range = uhf


# real radios
@directory.register
class GMRS50X1(BTechGMRS):
"""Baofeng Tech GMRS50X1"""
MODEL = "GMRS-50X1"
BANDS = 2
LIST_TMR = LIST_TMR16
_power_levels = [chirp_common.PowerLevel("High", watts=50),
chirp_common.PowerLevel("Mid", watts=10),
chirp_common.PowerLevel("Low", watts=5)]
_vhf_range = (136000000, 175000000)
_uhf_range = (400000000, 521000000)
_upper = 255
_magic = MSTRING_GMRS50X1
_fileid = [GMRS50X1_fp1, GMRS50X1_fp, ]


COLORHT_MEM_FORMAT = """
#seekto 0x0000;
struct {
lbcd rxfreq[4];
lbcd txfreq[4];
ul16 rxtone;
ul16 txtone;
u8 unknown0:4,
scode:4;
u8 unknown1:2,
spmute:2,
unknown2:2,
optsig:2;
u8 unknown3:3,
scramble:1,
unknown4:3,
power:1;
u8 unknown5:1,
wide:1,
unknown6:2,
bcl:1,
add:1,
pttid:2;
} memory[200];

#seekto 0x0E00;
struct {
u8 tmr;
u8 unknownE01;
u8 sql;
u8 unknownE03[2];
u8 tot;
u8 save;
u8 unknownE07;
u8 abr;
u8 beep;
u8 unknownE0A[4];
u8 dsub;
u8 dtmfst;
u8 screv;
u8 unknownE11[3];
u8 pttid;
u8 unknownE15;
u8 pttlt;
u8 unknownE17;
u8 emctp;
u8 emcch;
u8 sigbp;
u8 unknownE1B;
u8 camdf;
u8 cbmdf;
u8 ccmdf;
u8 cdmdf;
u8 langua;
u8 voice;
u8 vox;
u8 voxt;
u8 sync; // BTech radios use this as the display sync setting
// other radios use this as the auto keypad lock setting
u8 stfc;
u8 mffc;
u8 sfafc;
u8 sfbfc;
u8 sfcfc;
u8 sfdfc;
u8 subfc;
u8 fmfc;
u8 sigfc;
u8 menufc;
u8 txfc;
u8 rxfc;
u8 unknownE31[5];
u8 anil;
u8 reps;
u8 tmrmr;
u8 ste;
u8 rpste;
u8 rptdl;
u8 dtmfg;
u8 tmrtx;
} settings;

#seekto 0x0E80;
struct {
u8 unknown1;
u8 vfomr;
u8 keylock;
u8 unknown2;
u8 unknown3:4,
vfomren:1,
unknown4:1,
reseten:1,
menuen:1;
u8 unknown5[11];
u8 dispab;
u8 unknown6[2];
u8 menu;
u8 unknown7[7];
u8 vfomra;
u8 vfomrb;
u8 vfomrc;
u8 vfomrd;
u8 mrcha;
u8 mrchb;
u8 mrchc;
u8 mrchd;
} settings2;

struct settings_vfo {
u8 freq[8];
u8 offset[6];
u8 unknown2[2];
ul16 rxtone;
ul16 txtone;
u8 scode;
u8 spmute;
u8 optsig;
u8 scramble;
u8 wide;
u8 power;
u8 shiftd;
u8 step;
u8 unknown3[4];
};

#seekto 0x0F00;
struct {
struct settings_vfo a;
struct settings_vfo b;
struct settings_vfo c;
struct settings_vfo d;
} vfo;

#seekto 0x0FE0;
struct {
char line[16];
} static_msg;

#seekto 0x1000;
struct {
char name[8];
u8 unknown1[8];
} names[200];

#seekto 0x2400;
struct {
u8 period; // one out of LIST_5TONE_STANDARD_PERIODS
u8 group_tone;
u8 repeat_tone;
u8 unused[13];
} _5tone_std_settings[15];

#seekto 0x2500;
struct {
u8 frame1[5];
u8 frame2[5];
u8 frame3[5];
u8 standard; // one out of LIST_5TONE_STANDARDS
} _5tone_codes[15];

#seekto 0x25F0;
struct {
u8 _5tone_delay1; // * 10ms
u8 _5tone_delay2; // * 10ms
u8 _5tone_delay3; // * 10ms
u8 _5tone_first_digit_ext_length;
u8 unknown1;
u8 unknown2;
u8 unknown3;
u8 unknown4;
u8 decode_standard;
u8 unknown5:5,
_5tone_decode_call_frame3:1,
_5tone_decode_call_frame2:1,
_5tone_decode_call_frame1:1;
u8 unknown6:5,
_5tone_decode_disp_frame3:1,
_5tone_decode_disp_frame2:1,
_5tone_decode_disp_frame1:1;
u8 decode_reset_time; // * 100 + 100ms
} _5tone_settings;

#seekto 0x2900;
struct {
u8 code[16]; // 0=x0A, A=0x0D, B=0x0E, C=0x0F, D=0x00, #=0x0C *=0x0B
} dtmf_codes[15];

#seekto 0x29F0;
struct {
u8 dtmfspeed_on; //list with 50..2000ms in steps of 10
u8 dtmfspeed_off; //list with 50..2000ms in steps of 10
u8 unknown0[14];
u8 inspection[16];
u8 monitor[16];
u8 alarmcode[16];
u8 stun[16];
u8 kill[16];
u8 revive[16];
u8 unknown1[16];
u8 unknown2[16];
u8 unknown3[16];
u8 unknown4[16];
u8 unknown5[16];
u8 unknown6[16];
u8 unknown7[16];
u8 masterid[16];
u8 viceid[16];
u8 unused01:7,
mastervice:1;
u8 unused02:3,
mrevive:1,
mkill:1,
mstun:1,
mmonitor:1,
minspection:1;
u8 unused03:3,
vrevive:1,
vkill:1,
vstun:1,
vmonitor:1,
vinspection:1;
u8 unused04:6,
txdisable:1,
rxdisable:1;
u8 groupcode;
u8 spacecode;
u8 delayproctime; // * 100 + 100ms
u8 resettime; // * 100 + 100ms
} dtmf_settings;

#seekto 0x2D00;
struct {
struct {
ul16 freq1;
u8 unused01[6];
ul16 freq2;
u8 unused02[6];
} _2tone_encode[15];
u8 duration_1st_tone; // *10ms
u8 duration_2nd_tone; // *10ms
u8 duration_gap; // *10ms
u8 unused03[13];
struct {
struct {
u8 dec; // one out of LIST_2TONE_DEC
u8 response; // one out of LIST_2TONE_RESPONSE
u8 alert; // 1-16
} decs[4];
u8 unused04[4];
} _2tone_decode[15];
u8 unused05[16];

struct {
ul16 freqA;
ul16 freqB;
ul16 freqC;
ul16 freqD;
// unknown what those values mean, but they are
// derived from configured frequencies
ul16 derived_from_freqA; // 2304000/freqA
ul16 derived_from_freqB; // 2304000/freqB
ul16 derived_from_freqC; // 2304000/freqC
ul16 derived_from_freqD; // 2304000/freqD
}freqs[15];
u8 reset_time; // * 100 + 100ms - 100-8000ms
} _2tone;

#seekto 0x3D80;
struct {
u8 vhf_low[3];
u8 vhf_high[3];
u8 unknown1[4];
u8 unknown2[6];
u8 vhf2_low[3];
u8 vhf2_high[3];
u8 unknown3[4];
u8 unknown4[6];
u8 uhf_low[3];
u8 uhf_high[3];
u8 unknown5[4];
u8 unknown6[6];
u8 uhf2_low[3];
u8 uhf2_high[3];
} ranges;

#seekto 0x3F70;
struct {
char fp[6];
} fingerprint;

"""


class QYTColorHT(BTechMobileCommon):
"""QTY's Color LCD Handheld and alike radios"""
COLOR_LCD = True
COLOR_LCD3 = True
NAME_LENGTH = 8
LIST_TMR = LIST_TMR15

def process_mmap(self):
"""Process the mem map into the mem object"""

# Get it
self._memobj = bitwise.parse(COLORHT_MEM_FORMAT, self._mmap)

# load specific parameters from the radio image
self.set_options()

def set_options(self):
"""This is to read the options from the image and set it in the
environment, for now just the limits of the freqs in the VHF/UHF
ranges"""

# setting the correct ranges for each radio type
ranges = self._memobj.ranges

# the normal dual bands
vhf = _decode_ranges(ranges.vhf_low, ranges.vhf_high)
uhf = _decode_ranges(ranges.uhf_low, ranges.uhf_high)

# DEBUG
LOG.info("Radio ranges: VHF %d to %d" % vhf)
LOG.info("Radio ranges: UHF %d to %d" % uhf)

# the additional bands
if self.MODEL in ["KT-8R"]:
# 200Mhz band
vhf2 = _decode_ranges(ranges.vhf2_low, ranges.vhf2_high)
LOG.info("Radio ranges: VHF(220) %d to %d" % vhf2)
self._220_range = vhf2

# 350Mhz band
uhf2 = _decode_ranges(ranges.uhf2_low, ranges.uhf2_high)
LOG.info("Radio ranges: UHF(350) %d to %d" % uhf2)
self._350_range = uhf2

# set the class with the real data
self._vhf_range = vhf
self._uhf_range = uhf


# real radios
@directory.register
class KT8R(QYTColorHT):
"""QYT KT8R"""
VENDOR = "QYT"
MODEL = "KT-8R"
BANDS = 4
LIST_TMR = LIST_TMR16
_vhf_range = (136000000, 175000000)
_220_range = (200000000, 261000000)
_uhf_range = (400000000, 481000000)
_350_range = (350000000, 391000000)
_magic = MSTRING_KT8R
_fileid = [KT8R_fp2, KT8R_fp1, KT8R_fp, ]
_power_levels = [chirp_common.PowerLevel("High", watts=5),
chirp_common.PowerLevel("Low", watts=1)]
(4-4/16)