Project

General

Profile

Bug #10787 » retevis_rb15_full_band_5.py

M B, 08/15/2023 11:52 AM

 
# Copyright 2022 Jim Unroe <rock.unroe@gmail.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

import struct
import logging

from chirp import chirp_common, directory, memmap
from chirp import bitwise, errors, util
from chirp import bandplan_na
from chirp.settings import RadioSetting, RadioSettingGroup, \
RadioSettingValueInteger, RadioSettingValueList, \
RadioSettingValueBoolean, RadioSettings

LOG = logging.getLogger(__name__)

MEM_FORMAT = """
struct memory {
u32 rxfreq; // 00-03
u16 decQT; // 04-05
u32 txfreq; // 06-09
u16 encQT; // 0a-0b
u8 lowpower:1, // Power Level // 0c
unknown1:1,
isnarrow:1, // Bandwidth
bcl:2, // Busy Channel Lockout
scan:1, // Scan Add
encode:1, // Encode
isunused:1; // Is Unused
u8 unknown3[3]; // 0d-0f
};

#seekto 0x0170;
struct memory channels[99];

#seekto 0x0162;
struct {
u8 unknown_1:1, // 0x0162
voice:2, // Voice Prompt
beep:1, // Beep Switch
unknown_2:1,
vox:1, // VOX
autolock:1, // Auto Lock
vibrate:1; // Vibrate Switch
u8 squelch:4, // 0x0163 SQ Level
unknown_3:1,
volume:3; // Volume Level
u8 voxl:4, // 0x0164 VOX Level
voxd:4; // VOX Delay
u8 unknown_5:1, // 0x0165
save:3, // Power Save
calltone:4; // Call Tone
u8 unknown_6:4, // 0x0166
roger:2, // Roger Tone
backlight:2; // Backlight Set
u16 tot; // 0x0167-0x0168 Time-out Timer
u8 unknown_7[3]; // 0x0169-0x016B
u8 skeyul; // 0x016C Side Key Up Long
u8 skeyus; // 0x016D Side Key Up Short
u8 skeydl; // 0x016E Side Key Down Long
u8 skeyds; // 0x016F Side Key Down Short
} settings;
"""

CMD_ACK = b"\x06"

RB15_DTCS = tuple(sorted(chirp_common.DTCS_CODES + (645,)))

LIST_BACKLIGHT = ["Off", "On", "Auto"]
LIST_BCL = ["None", "Carrier", "QT/DQT Match"]
LIST_ROGER = ["Off", "Start", "End", "Start and End"]
LIST_SAVE = ["Off", "1:1", "1:2", "1:3", "1:4", "1:5"]
_STEP_LIST = [2.5, 5., 6.25, 10., 12.5, 20., 25., 50.]
LIST_VOICE = ["Off", "Chinese", "English"]
LIST_VOXD = ["0.0", "0.5", "1.0", "1.5", "2.0", "2.5", "3.0", "3.5", "4.0",
"4.5", "5.0S"]

SKEY_CHOICES = ["None", "Scan", "Monitor", "VOX On/Off",
"Local Alarm", "Remote Alarm", "Backlight On/Off", "Call Tone"]
SKEY_VALUES = [0x00, 0x01, 0x03, 0x04, 0x09, 0x0A, 0x13, 0x14]

TOT_CHOICES = ["Off", "15", "30", "45", "60", "75", "90", "105", "120",
"135", "150", "165", "180", "195", "210", "225", "240",
"255", "270", "285", "300", "315", "330", "345", "360",
"375", "390", "405", "420", "435", "450", "465", "480",
"495", "510", "525", "540", "555", "570", "585", "600"
]
TOT_VALUES = [0x00, 0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78,
0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0,
0xFF, 0x10E, 0x11D, 0x12C, 0x13B, 0x14A, 0x159, 0x168,
0x177, 0x186, 0x195, 0x1A4, 0x1B3, 0x1C2, 0x1D1, 0x1E0,
0x1EF, 0x1FE, 0x20D, 0x21C, 0x22B, 0x23A, 0x249, 0x258
]


def _checksum(data):
cs = 0
for byte in data:
cs += byte
return cs % 256


def tone2short(t):
"""Convert a string tone or DCS to an encoded u16
"""
tone = str(t)
if tone == "----":
u16tone = 0x0000
elif tone[0] == 'D': # This is a DCS code
c = tone[1: -1]
code = int(c, 8)
if tone[-1] == 'I':
code |= 0x4000
u16tone = code | 0x8000
else: # This is an analog CTCSS
u16tone = int(tone[0:-2]+tone[-1]) & 0xffff # strip the '.'
return u16tone


def short2tone(tone):
""" Map a binary CTCSS/DCS to a string name for the tone
"""
if tone == 0 or tone == 0xffff:
ret = "----"
else:
code = tone & 0x3fff
if tone & 0x4000: # This is a DCS
ret = "D%0.3oN" % code
elif tone & 0x8000: # This is an inverse code
ret = "D%0.3oI" % code
else: # Just plain old analog CTCSS
ret = "%4.1f" % (code / 10.0)
return ret


def _rb15_enter_programming_mode(radio):
serial = radio.pipe

# lengthen the timeout here as these radios are resetting due to timeout
radio.pipe.timeout = 0.75

exito = False
for i in range(0, 5):
serial.write(radio.magic)
ack = serial.read(1)

try:
if ack == CMD_ACK:
exito = True
break
except:
LOG.debug("Attempt #%s, failed, trying again" % i)
pass

# return timeout to default value
radio.pipe.timeout = 0.25

# check if we had EXITO
if exito is False:
msg = "The radio did not accept program mode after five tries.\n"
msg += "Check you interface cable and power cycle your radio."
raise errors.RadioError(msg)


def _rb15_exit_programming_mode(radio):
serial = radio.pipe
try:
serial.write(b"21" + b"\x05\xEE" + b"V")
except:
raise errors.RadioError("Radio refused to exit programming mode")


def _rb15_read_block(radio, block_addr, block_size):
serial = radio.pipe

cmd = struct.pack(">BH", ord(b'R'), block_addr)

ccs = bytes([_checksum(cmd)])

expectedresponse = b"R" + cmd[1:]

cmd = cmd + ccs

LOG.debug("Reading block %04x..." % (block_addr))

try:
serial.write(cmd)
response = serial.read(3 + block_size + 1)

cs = bytes([_checksum(response[:-1])])

if response[:3] != expectedresponse:
raise Exception("Error reading block %04x." % (block_addr))

chunk = response[3:]

if chunk[-1:] != cs:
raise Exception("Block failed checksum!")

block_data = chunk[:-1]
except:
raise errors.RadioError("Failed to read block at %04x" % block_addr)

return block_data


def _rb15_write_block(radio, block_addr, block_size):
serial = radio.pipe

cmd = struct.pack(">BH", ord(b'W'), block_addr)
data = radio.get_mmap()[block_addr:block_addr + block_size]

cs = bytes([_checksum(cmd + data)])
data += cs

LOG.debug("Writing Data:")
LOG.debug(util.hexprint(cmd + data))

try:
serial.write(cmd + data)
if serial.read(1) != CMD_ACK:
raise Exception("No ACK")
except:
raise errors.RadioError("Failed to send block "
"to radio at %04x" % block_addr)


def do_download(radio):
LOG.debug("download")
_rb15_enter_programming_mode(radio)

data = b""

status = chirp_common.Status()
status.msg = "Cloning from radio"

status.cur = 0
status.max = radio._memsize

for addr in range(0x0000, radio._memsize, radio.BLOCK_SIZE):
status.cur = addr + radio.BLOCK_SIZE
radio.status_fn(status)

block = _rb15_read_block(radio, addr, radio.BLOCK_SIZE)
data += block

LOG.debug("Address: %04x" % addr)
LOG.debug(util.hexprint(block))

_rb15_exit_programming_mode(radio)

return memmap.MemoryMapBytes(data)


def do_upload(radio):
status = chirp_common.Status()
status.msg = "Uploading to radio"

_rb15_enter_programming_mode(radio)

status.cur = 0
status.max = radio._memsize

for start_addr, end_addr in radio._ranges:
for addr in range(start_addr, end_addr, radio.BLOCK_SIZE):
status.cur = addr + radio.BLOCK_SIZE
radio.status_fn(status)
_rb15_write_block(radio, addr, radio.BLOCK_SIZE)

_rb15_exit_programming_mode(radio)


def _split(rf, f1, f2):
"""Returns False if the two freqs are in the same band (no split)
or True otherwise"""

# determine if the two freqs are in the same band
for low, high in rf.valid_bands:
if f1 >= low and f1 <= high and \
f2 >= low and f2 <= high:
# if the two freqs are on the same Band this is not a split
return False

# if you get here is because the freq pairs are split
return True


class RB15RadioBase(chirp_common.CloneModeRadio):
"""RETEVIS RB15 BASE"""
VENDOR = "Retevis"
BAUD_RATE = 9600
NEEDS_COMPAT_SERIAL = False

BLOCK_SIZE = 0x10
magic = b"21" + b"\x05\x10" + b"x"

VALID_BANDS = [(400000000, 480000000)]

_ranges = [
(0x0150, 0x07A0),
]
_memsize = 0x07A0

_frs = _pmr = False

def get_features(self):
rf = chirp_common.RadioFeatures()
rf.has_settings = True
rf.has_bank = False
rf.has_ctone = True
rf.has_cross = True
rf.has_rx_dtcs = True
rf.has_tuning_step = False
rf.can_odd_split = True
rf.has_name = False
rf.valid_skips = ["", "S"]
rf.valid_tmodes = ["", "Tone", "TSQL", "DTCS", "Cross"]
rf.valid_cross_modes = ["Tone->Tone", "Tone->DTCS", "DTCS->Tone",
"->Tone", "->DTCS", "DTCS->", "DTCS->DTCS"]
rf.valid_power_levels = self.POWER_LEVELS
rf.valid_duplexes = ["", "-", "+", "split", "off"]
rf.valid_modes = ["FM", "NFM"] # 25 kHz, 12.5 kHz.
rf.valid_dtcs_codes = RB15_DTCS
rf.memory_bounds = (1, self._upper)
rf.valid_tuning_steps = _STEP_LIST
rf.valid_bands = self.VALID_BANDS

return rf

def process_mmap(self):
self._memobj = bitwise.parse(MEM_FORMAT, self._mmap)

def sync_in(self):
"""Download from radio"""
try:
data = do_download(self)
except errors.RadioError:
# Pass through any real errors we raise
raise
except:
# If anything unexpected happens, make sure we raise
# a RadioError and log the problem
LOG.exception('Unexpected error during download')
raise errors.RadioError('Unexpected error communicating '
'with the radio')
self._mmap = data
self.process_mmap()

def sync_out(self):
"""Upload to radio"""
try:
do_upload(self)
except:
# If anything unexpected happens, make sure we raise
# a RadioError and log the problem
LOG.exception('Unexpected error during upload')
raise errors.RadioError('Unexpected error communicating '
'with the radio')

def get_raw_memory(self, number):
return repr(self._memobj.memory[number - 1])

def _get_tone(self, _mem, mem):
"""Decode both the encode and decode CTSS/DCS codes from
the memory channel and stuff them into the UI
memory channel row.
"""
txtone = short2tone(_mem.encQT)
rxtone = short2tone(_mem.decQT)
pt = "N"
pr = "N"

if txtone == "----":
txmode = ""
elif txtone[0] == "D":
mem.dtcs = int(txtone[1:4])
if txtone[4] == "I":
pt = "R"
txmode = "DTCS"
else:
mem.rtone = float(txtone)
txmode = "Tone"

if rxtone == "----":
rxmode = ""
elif rxtone[0] == "D":
mem.rx_dtcs = int(rxtone[1:4])
if rxtone[4] == "I":
pr = "R"
rxmode = "DTCS"
else:
mem.ctone = float(rxtone)
rxmode = "Tone"

if txmode == "Tone" and len(rxmode) == 0:
mem.tmode = "Tone"
elif (txmode == rxmode and txmode == "Tone" and
mem.rtone == mem.ctone):
mem.tmode = "TSQL"
elif (txmode == rxmode and txmode == "DTCS" and
mem.dtcs == mem.rx_dtcs):
mem.tmode = "DTCS"
elif (len(rxmode) + len(txmode)) > 0:
mem.tmode = "Cross"
mem.cross_mode = "%s->%s" % (txmode, rxmode)

mem.dtcs_polarity = pt + pr

LOG.debug("_get_tone: Got TX %s (%i) RX %s (%i)" %
(txmode, _mem.encQT, rxmode, _mem.decQT))

def _set_tone(self, mem, _mem):
"""Update the memory channel block CTCC/DCS tones
from the UI fields
"""
def _set_dcs(code, pol):
val = int("%i" % code, 8) | 0x4000
if pol == "R":
val = int("%i" % code, 8) | 0x8000
return val

rx_mode = tx_mode = None
rxtone = txtone = 0x0000

if mem.tmode == "Tone":
tx_mode = "Tone"
txtone = int(mem.rtone * 10)
elif mem.tmode == "TSQL":
rx_mode = tx_mode = "Tone"
rxtone = txtone = int(mem.ctone * 10)
elif mem.tmode == "DTCS":
tx_mode = rx_mode = "DTCS"
txtone = _set_dcs(mem.dtcs, mem.dtcs_polarity[0])
rxtone = _set_dcs(mem.dtcs, mem.dtcs_polarity[1])
elif mem.tmode == "Cross":
tx_mode, rx_mode = mem.cross_mode.split("->")
if tx_mode == "DTCS":
txtone = _set_dcs(mem.dtcs, mem.dtcs_polarity[0])
elif tx_mode == "Tone":
txtone = int(mem.rtone * 10)
if rx_mode == "DTCS":
rxtone = _set_dcs(mem.rx_dtcs, mem.dtcs_polarity[1])
elif rx_mode == "Tone":
rxtone = int(mem.ctone * 10)

_mem.decQT = rxtone
_mem.encQT = txtone

LOG.debug("Set TX %s (%i) RX %s (%i)" %
(tx_mode, _mem.encQT, rx_mode, _mem.decQT))

def get_memory(self, number):
mem = chirp_common.Memory()
_mem = self._memobj.channels[number - 1]
mem.number = number

mem.freq = int(_mem.rxfreq) * 10

# We'll consider any blank (i.e. 0 MHz frequency) to be empty
if mem.freq == 0:
mem.empty = True
return mem

if _mem.rxfreq.get_raw() == "\xFF\xFF\xFF\xFF":
mem.freq = 0
mem.empty = True
return mem

if _mem.get_raw() == ("\xFF" * 16):
LOG.debug("Initializing empty memory")
_mem.set_raw("\x00" * 16)

# Freq and offset
mem.freq = int(_mem.rxfreq) * 10
# tx freq can be blank
if _mem.get_raw()[4] == "\xFF":
# TX freq not set
mem.offset = 0
mem.duplex = "off"
else:
# TX freq set
offset = (int(_mem.txfreq) * 10) - mem.freq
if offset != 0:
if _split(self.get_features(), mem.freq, int(
_mem.txfreq) * 10):
mem.duplex = "split"
mem.offset = int(_mem.txfreq) * 10
elif offset < 0:
mem.offset = abs(offset)
mem.duplex = "-"
elif offset > 0:
mem.offset = offset
mem.duplex = "+"
else:
mem.offset = 0

mem.mode = _mem.isnarrow and "NFM" or "FM"

self._get_tone(_mem, mem)

mem.power = self.POWER_LEVELS[_mem.lowpower]

if not _mem.scan:
mem.skip = "S"

mem.extra = RadioSettingGroup("Extra", "extra")

if _mem.bcl > 0x02:
val = 0
else:
val = _mem.bcl
rs = RadioSetting("bcl", "BCL",
RadioSettingValueList(
LIST_BCL, LIST_BCL[val]))
mem.extra.append(rs)

rs = RadioSetting("encode", "Encode",
RadioSettingValueBoolean(_mem.encode))
mem.extra.append(rs)

return mem

def set_memory(self, mem):
LOG.debug("Setting %i(%s)" % (mem.number, mem.extd_number))
_mem = self._memobj.channels[mem.number - 1]

# if empty memory
if mem.empty:
_mem.set_raw("\xFF" * 16)
return

_mem.isunused = False

_mem.unknown1 = False

_mem.encode = False

_mem.rxfreq = mem.freq / 10

if mem.duplex == "off":
for i in range(0, 4):
_mem.txfreq[i].set_raw("\xFF")
elif mem.duplex == "split":
_mem.txfreq = mem.offset / 10
elif mem.duplex == "+":
_mem.txfreq = (mem.freq + mem.offset) / 10
elif mem.duplex == "-":
_mem.txfreq = (mem.freq - mem.offset) / 10
else:
_mem.txfreq = mem.freq / 10

_mem.scan = mem.skip != "S"
_mem.isnarrow = mem.mode == "NFM"

self._set_tone(mem, _mem)

_mem.lowpower = mem.power == self.POWER_LEVELS[1]

for setting in mem.extra:
setattr(_mem, setting.get_name(), setting.value)

def get_settings(self):
_settings = self._memobj.settings
basic = RadioSettingGroup("basic", "Basic Settings")
sidekey = RadioSettingGroup("sidekey", "Side Key Settings")
voxset = RadioSettingGroup("vox", "VOX Settings")
top = RadioSettings(basic, sidekey, voxset)

voice = RadioSetting("voice", "Language", RadioSettingValueList(
LIST_VOICE, LIST_VOICE[_settings.voice]))
basic.append(voice)

beep = RadioSetting("beep", "Key Beep",
RadioSettingValueBoolean(_settings.beep))
basic.append(beep)

volume = RadioSetting("volume", "Volume Level",
RadioSettingValueInteger(
0, 7, _settings.volume))
basic.append(volume)

save = RadioSetting("save", "Battery Save",
RadioSettingValueList(
LIST_SAVE, LIST_SAVE[_settings.save]))
basic.append(save)

backlight = RadioSetting("backlight", "Backlight",
RadioSettingValueList(
LIST_BACKLIGHT,
LIST_BACKLIGHT[_settings.backlight]))
basic.append(backlight)

vibrate = RadioSetting("vibrate", "Vibrate",
RadioSettingValueBoolean(_settings.vibrate))
basic.append(vibrate)

autolock = RadioSetting("autolock", "Auto Lock",
RadioSettingValueBoolean(_settings.autolock))
basic.append(autolock)

calltone = RadioSetting("calltone", "Call Tone",
RadioSettingValueInteger(
1, 10, _settings.calltone))
basic.append(calltone)

roger = RadioSetting("roger", "Roger Tone",
RadioSettingValueList(
LIST_ROGER, LIST_ROGER[_settings.roger]))
basic.append(roger)

squelch = RadioSetting("squelch", "Squelch Level",
RadioSettingValueInteger(
0, 10, _settings.squelch))
basic.append(squelch)

def apply_tot_listvalue(setting, obj):
LOG.debug("Setting value: " + str(
setting.value) + " from list")
val = str(setting.value)
index = TOT_CHOICES.index(val)
val = TOT_VALUES[index]
obj.set_value(val)

if _settings.tot in TOT_VALUES:
idx = TOT_VALUES.index(_settings.tot)
else:
idx = TOT_VALUES.index(0x78)
rs = RadioSettingValueList(TOT_CHOICES, TOT_CHOICES[idx])
rset = RadioSetting("tot", "Time-out Timer", rs)
rset.set_apply_callback(apply_tot_listvalue, _settings.tot)
basic.append(rset)

# Side Key Settings
def apply_skey_listvalue(setting, obj):
LOG.debug("Setting value: " + str(
setting.value) + " from list")
val = str(setting.value)
index = SKEY_CHOICES.index(val)
val = SKEY_VALUES[index]
obj.set_value(val)

# Side Key (Upper) - Short Press
if _settings.skeyus in SKEY_VALUES:
idx = SKEY_VALUES.index(_settings.skeyus)
else:
idx = SKEY_VALUES.index(0x01)
rs = RadioSettingValueList(SKEY_CHOICES, SKEY_CHOICES[idx])
rset = RadioSetting("skeyus", "Side Key(upper) - Short Press", rs)
rset.set_apply_callback(apply_skey_listvalue, _settings.skeyus)
sidekey.append(rset)

# Side Key (Upper) - Long Press
if _settings.skeyul in SKEY_VALUES:
idx = SKEY_VALUES.index(_settings.skeyul)
else:
idx = SKEY_VALUES.index(0x04)
rs = RadioSettingValueList(SKEY_CHOICES, SKEY_CHOICES[idx])
rset = RadioSetting("skeyul", "Side Key(upper) - Long Press", rs)
rset.set_apply_callback(apply_skey_listvalue, _settings.skeyul)
sidekey.append(rset)

# Side Key (Lower) - Short Press
if _settings.skeyds in SKEY_VALUES:
idx = SKEY_VALUES.index(_settings.skeyds)
else:
idx = SKEY_VALUES.index(0x03)
rs = RadioSettingValueList(SKEY_CHOICES, SKEY_CHOICES[idx])
rset = RadioSetting("skeyds", "Side Key(lower) - Short Press", rs)
rset.set_apply_callback(apply_skey_listvalue, _settings.skeyds)
sidekey.append(rset)

# Side Key (Lower) - Long Press
if _settings.skeyul in SKEY_VALUES:
idx = SKEY_VALUES.index(_settings.skeydl)
else:
idx = SKEY_VALUES.index(0x14)
rs = RadioSettingValueList(SKEY_CHOICES, SKEY_CHOICES[idx])
rset = RadioSetting("skeydl", "Side Key(lower) - Long Press", rs)
rset.set_apply_callback(apply_skey_listvalue, _settings.skeydl)
sidekey.append(rset)

# VOX Settings
vox = RadioSetting("vox", "VOX",
RadioSettingValueBoolean(_settings.vox))
voxset.append(vox)

voxl = RadioSetting("voxl", "VOX Level",
RadioSettingValueInteger(
0, 10, _settings.voxl))
voxset.append(voxl)

voxd = RadioSetting("voxd", "VOX Delay (seconde)",
RadioSettingValueList(
LIST_VOXD, LIST_VOXD[_settings.voxd]))
voxset.append(voxd)

return top

def set_settings(self, settings):
for element in settings:
if not isinstance(element, RadioSetting):
self.set_settings(element)
continue
else:
try:
if "." in element.get_name():
bits = element.get_name().split(".")
obj = self._memobj
for bit in bits[:-1]:
obj = getattr(obj, bit)
setting = bits[-1]
else:
obj = self._memobj.settings
setting = element.get_name()

if element.has_apply_callback():
LOG.debug("Using apply callback")
element.run_apply_callback()
elif element.value.get_mutable():
LOG.debug("Setting %s = %s" % (setting, element.value))
setattr(obj, setting, element.value)
except Exception:
LOG.debug(element.get_name())
raise

@classmethod
def match_model(cls, filedata, filename):
# This radio has always been post-metadata, so never do
# old-school detection
return False


@directory.register
class RB15Radio(RB15RadioBase):
"""RETEVIS RB15"""
VENDOR = "Retevis"
MODEL = "RB15"

POWER_LEVELS = [chirp_common.PowerLevel("High", watts=2.00),
chirp_common.PowerLevel("Low", watts=0.50)]

_ranges = [
(0x0150, 0x07A0),
]
_memsize = 0x07A0

_upper = 99
_frs = False # sold as FRS radio but supports full band TX/RX


@directory.register
class RB615RadioBase(RB15RadioBase):
"""RETEVIS RB615"""
VENDOR = "Retevis"
MODEL = "RB615"

POWER_LEVELS = [chirp_common.PowerLevel("High", watts=2.00),
chirp_common.PowerLevel("Low", watts=0.50)]

_ranges = [
(0x0150, 0x07A0),
]
_memsize = 0x07A0

_upper = 99
_pmr = False # sold as PMR radio but supports full band TX/RX
(19-19/27)